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PREFACE

This document is submitted in accordance with the Data Procure-

ment Document Number 282, Data Requirement Number MA-04 under the

George C. Marshall Space Flight Center Contract NAS8-28144. This is

Book 2, an Appendix to Volume III of the Astronomy Sortie Missions

(ASM) Definition Study Final Report. It contains the detailed

tables, charts and studies which support the mission and system

analyses, subsystem analyses and the preliminary design tasks of

Volume III, Book 1.

Comments or requests for additional information should be

directed to:

Dale J. Wasserman/PD-MP-A

Astronomy Sortie Missions Definition Study

Contracting Officer's Representative

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

William P. Pratt/8102

Astronomy Sortie Missions Definition Study

Martin Marietta Denver Division Study Manager

Denver, Colorado 80201
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FOREWORD

The primary purpose of the Astronomy Sortie Mission Definition

Study was to provide NASA with an overview of the Astronomy Sortie Mis-

sion requirements. The specific objectives of the study were to:

1. Evaluate the responsiveness of the sortie mission concept to
stated scientific objectives.

2. Develop conceptual designs and interfaces for sortie missions
including telescopes, mounts, controls, displays and support
equipment.

3. Develop a system concept encompassing the Sortie Mission from
mission planning through post-flight engineering and scien-
tific documentation.

4. Provide development schedules and supporting research and technology
requirements for Shuttle Sortie hardware.

The approach that was utilized in performing the study consisted of

the following sequence:

1. Analyzing and conceptual designing the alternative candidate
astronomy sortie mission program that maximized the utiliza-
tion of common features.

2. Analyzing the astronomy sortie mission program to ensure compati-
bility between interfacing systems, evaluating overall perform-
ance and ensuring mission responsiveness, and developing a complete
mission profile.

3. Analyzing the support subsystems to a depth which was sufficient
to establish feasibility, compatibility with other subsystems,
adequate performance, physical characteristics, interface defi-
nition, reliability level, and compatibility with manned opera-
tions.

4. Conceptually designing the selected astronomy sortie mission
program which included defining the significant design features,
dimensions and interfaces on layout drawings, and defining the
telescope system physical characteristics and support requirements.

5. Providing development schedules and supporting research and
technology requirements.
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The final report of the study is contained in four volumes, of which

this volume is Book 2 of Volume III. The four volumes of the report are:

Volume I

Volume II

- Book 1 -

Volume II

- Book 2 -

Volume III

- Book 1 -

- Astronomy Sortie Missions Definition Study Final Report:

Executive Summary

This volume summarizes the significant achievements and

activities of the study effort.

Astrononiv Sortie Missions Definition Study, Fial %cpor.:

Astronomy Sortie Program Technical Report

Book 1 of this volume includes the definition of telescope

requirements, preliminary mission and systems definition,

identification of alternative sortie programs, definition of

alternative sortie programs, the evaluation of the alternative

sortie programs and the selection of the recommended astronory

sortie mission program. This volume identifies tha various

concepts approached and documpents the raticLal-c for the conccpt

and approaches selected for further consideration.

- Astronomy Sortie Missions Definition Study Final Report:

Appendix

Book 2 of this volume contains the Baseline E::perircint Dc:finiticn

Documents (BFDD's) that were preplared for each of the c::pcrient:~

considered during the study.

- Astronomy Sortie Missions Definition Study Final Report:

Design Analyses and Trade Studies

Book 1 of this volume includes the results of the design analyses

and trade studies conducted on candidate concrpts during the

iii



Volume III -

- Book 2 -

Volume IV -

selection of recommended configuraticns as well a- the design

analyses and trade studies conducted on tne selected concept.

Astronomy Sortie Missions Definition Study Final Report

Appendix

Book 2 of this volume contains the backup or supporting data

for the design analyses and trade studies that are sunmnarizce

in Volume III, Book I

Astronomy Sortie Missions Definition Study Final Report:

Program Development Requirements

This volume contains the planning data for subsequent phasez

and includes the gross project planning requirements; sched>::

milestones and networks; and supporting research and technology.
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Appendix Al

STUDY OF CANDIDATE SHUTTLE ORBITER
STABILIZATION SYSTEM
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The shuttle orbiter model used in this study is the Grumman
version shown in figure Al-1. The inertias and mass properties
associated with this configuration are:

a. Inertias:

I =1.41x10 kg-m2 (1.04x106 slug-ft2 )

I =8.22x10 6kg-m2 (6.05x106 slug-ft2)
YY

I =8.55x106kR-m2 (6.30x106 slug-ft2 )

I =I =I =0
xy xz yz

b. Orbiter mass:

M-91x10 kg (6.2x10 slugs)

The shuttle orbiter is assumed to be stabilized in a 500 km (270 NM)
circular orbit.

This appendix comprises five major completely independent
sections and a list of references.
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Figure Al-1. Grumman Shuttle Orbiter Configuration



Al.1. DETERMINATION OF SHUTTLE ORBITER BASELINE ATTITUDE
CONTROL PROPULSION SYSTEM (ACPS) ON-ORBIT FUEL CONSUMPTION

The shuttle orbiter baseline ACPS consists of 32 engines (13
mounted in each of the two wing pods and six in the one tail pod).
Figure Al-I is a sketch of the orbiter showing the location of these
three pods. Table Al-1 lists the functions of the various thrusters
located in each pod. The wing pods control yaw and roll, while the
wing pods in conjunction with the tail pod control pitch. To pro-
duce a pure uncoupled yaw or roll torque only two thrusters, one
from each wing pod, are required.

The following shuttle orbiter baseline ACPS control parameters
used in this study are:

a. Vehicle control moment arms (distance between appropriate
engines):

1) pitch (Yv axis): ty=llm (36 ft)

2) yaw (Z
v

axis): kz=22m (72 ft)

3) roll (X
v

axis): x =22m (72 ft)

b. Attitude deadband: +o00 8o=8.75 mrad(0.5 degree)

c. Propellant: monopropellant N2H
4

d. I -230 sec
sp

e. Engine thrust level: F=1.8 kN (400 lbf)

f. Minimum firing time, tf=100 msec

To compute the fuel consumed by the ACPS, the number of thruster
actuations per orbit must be determined. The shuttle orbiter torque
environment is assumed to comprise only gravity gradient torques. The
ACPS stabilizes the shuttle orbiter by counteracting these disturbance
torques. The resultant counteracting control torques are generated
by the ACPS by expelling gas at a rate proportional to the rectified
gravity gradient torques acting on the orbiter. The maximum average
rectified gravity gradient torques that can exist about the orbiter
X ' Yv, and Z axes are:
V VP V

A1-4



Table Al-1. On-Orbit ACPS Thruster Functions

Location Firing Direction Function

(number of engines)

Side (3)

Forward (3)

Aft (3)

Down (2)

Up (2)

Forward (3)

Aft (3)

+Y Translation

-X Translation,

Pitch and Yaw

Attitude Control

+X Translation,

Pitch and Yaw

Attitude Control

+Z Translation,

Roll Attitude Control

-Z Translation,

Roll Attitude Control

Pitch Attitude Control

Pitch Attitude Control

Al-5
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T 3 2(I -I )
gx ra=Wo (Izz yy

gy rao (Izz -Ixx)

T I - 3 2 - )
Tgz ra8 o (Iyy Ixx)

e r

(1)

(2)

(3)

(4)

o is the shuttle orbital rate, g is the gravitational acceleration

of the earth, R is the mean radius of the earth, R=6.44 Mm (R=4 000
statute miles), and r is the distance between the center of the
earth and orbiter center of mass.

For a 500 km (270 NM) circular orbit,

2 (32.2) (4000)2(5280) 1.22x0-6
o [4000+270(1.15)1 (5280)3

=1.10xl1-3 1
o *sec

Tgx ra, T Ira, and T ra equalsgx ra gyra gz ra

Tgr 0.384 N-m (0.291 ft-lb)gx ra

Tgylra'8.31 N-m (6.12 ft-lb)

Tgzlra=7.94 N-m (5.84 ft-lb)

1
2sec

(5)

(6)

(7)

(8)

The minimum angular momentum impulse
imparted to the orbiter due to firing the
each control axis. MIB equals

bit (MIB) that can be
ACPS is the same for

A1-6
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MIB-F xtf'F ztf (2F) yt
f

=3 960 N-m-sec (2 880 ft-lb-sec) (9)

Although the moment arm for pitch ky is half of those for yaw iz

and roll x , the number of engine firings for pitch is double those

required for either yaw or roll, thus making an MIB for pitch equal
to those for yaw and roll.

The vehicle body rates about the Xv, Yv, and Z
v
due to one MIB

equals

MIB
wi-MIi (i=x, y, z) (10)

where

xi is the angular rate about the it h axis, radians per second,

(deg/sec)

th 2Iii is the orbiter inertia about the i h axis, kg-m

(slug-ft
2
)

Wx' my, mz equal

w -2.81 mrad/sec (0.161 deg/sec) (11)x

-=0.482 mrad/sec (27.6x10- 3 deg/sec) (12)
Y

w -0.463 mrad/sec (26.6x10- 3 deg/sec) (13)z

Assume that the vehicle is in a torque-free environment.
In this environment, the orbiter will limit cycle between the limits
of the attitude deadband +0 . Figure A1-2 is a sketch of the ACPS

deadband. The lower limit -8
0
, is designated state a, and the upper

limit, +-O, is designated state b. Assume the ith vehicle axis is

at state a. At this point, the ACPS thrusters will fire one MIB

sending the i
t
h axis towards state b. As the ith axis traverses

the deadband from a to b, the axis angular velocity Wab equals

A1-7



STATE a

aab' Wab
- - a

ba ' Wba

I

-e
o

0 to
o

Figure A1-2. Sketch of ACPS Attitude Deadband
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WabWi+ ab (0) (14)

The position of the axis 0ab equals

eab= [Wi+wab(O)]t (15)

When the axis reaches state b, the thrusters fire once more
sending the vehicle back towards a. The angular velocity Wba

and position 0ba as the axis travels back towards a equal

Wba -wi+ba (0) (16)

.ba=[-i+Wba(0)]t+e °e0 '[-W +W (O>]t+o(17)

From equation 15, the time tab for the axis to traverse the dead-

band from state a to state b equals

eab0o
-
[o i+ aab()] oab 9

20
t 0 (18)
ab i+ ab() 18

From equation 17, the time tba to return to state a equals

0
ba-- 

0
o [-i+a () ]tba+o

20

tba Wiba()19)

Under steady state conditions

tabtba (20)

A1-9



Therefore, using equations 18, 19, and 20,

Wab(O) =Wba (0) (21)

Since the angular velocity of the ith axis cannot change instan-
taneously at either boundary of the deadband, the following expres-
sions can be written using equations 14 and 16.

Wba (
0

) i+Wab(O)

Wab (0) =-Wit+ba(O)

(22)

(23)

Using equations 21, 22, and 23, the following expressions for
Wab(0) and Wba(0) can be written

Wi

Wab (0)= 2

Wba(°) 2

Substituting the above expressions into either
results'in the time, tTi, required to traverse

band, 2eo

40

tTi=tab=t ba 
Wi

equation 18 or 19
the attitude dead-

(i-x,y,z) (26)

For the orbiter ACPS, 0O equals 8.75 mrad (0.5 degree). Substituting

the values of wi given in equations 11 through 13 into 26 yields the

times that it takes to traverse the Xv, Yv, and Zv axis deadbands,

respectively.

tTX=12.4 seconds

tTy=72.7 seconds

(27)

(28)

tTZ=75.6 seconds (29)

Al-10
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The assumption that the orbiter is in a torque-free environment is
valid if the actual gravity gradient torques acting on the orbiter
are unable to prevent the ACPS from limit cycling with every ACPS
actuation. The gravity gradient decelerating angular momentum im-
pulse, Hgi, for the above deadband transit times, tTi, equal

Hgi=(Tgilra)tTi (i=x,y,z) (30)

Using equations 6, 7, 8, 27, 28, and 29, Hgi for the Xv, Yv, and

Z axes equalv

H =4.76 N-m-sec (3.61 ft-lb-sec) (31)
gx

H =604 N-m-sec (445 ft-lb-sec) (32)
gy

H =600 N-m-sec (441 ft-lb-sec) (33)gz

Note that the maximum value of Hgi is less than one-sixth the value

of one MIB indicating that the gravity gradient torque environment
cannot prevent the ACPS from limit cycling. The assumption that
the shuttle orbiter is in a torque-free environment is valid. The
consequences of this valid assumption is that the fuel consumption
rate is independent of the stabilized orbiter attitude and only
depends on the average time, tTi, it takes to traverse the ACPS dead-

bands.

The number of engine firings per orbit equals

NEF/orbit=2To( + t + (34)
Tx Ty Tz

where To is the period in seconds of one orbit.

T 27o W
0

27r
= 5 700 seconds

1.10x10 3

Al-ll



Substituting equations 10 and 26 into equation 34,

(MIB)To 1 2 1
NEF/orbit = 20 (+ (36

o xx yy zz

The weight of fuel per orbit (kgf/orbit) equals

Ftf
WOF/orbit = 0.102 (NEF/orbit)I (37)

I
sp

Substitiiting equation 36 into 37,

0.102(MIB)T Ftf 1 2 I
WOF/orbit 28 I ( + (38)o8 sp (---+ I +

I )

o sp xx yy zz

For the baseline orbiter ACPS,

WOF/orbit=110 kgf/orbit (242 lb/orbit) (39)

The weight of fuel per day equals

WOF/day = (24)(3 600) WOF/orbit = 1 670 kgf/day
To

(3 660 lb/day) (40)

This ACPS fuel consumption is too large. As an alternative,
assume that only one thruster instead of multiple thruster pairs
are fired when an attitude deadband limit +0 is reached. This

-O

modified ACPS system reduces the fuel consumption by decreasing
the magnitude of one MIB by a factor of two, thus increasing the
time it takes to traverse the attitude deadband. But since only
one thruster is fired instead of oppositely directed thruster pairs
a translational force F is produced. The change in the orbiter's
velocity AV due to this translational force equals

AV=tf=l 1.8x10 (0.1)=1.98x10-3m/sec (6.5x10- 3ft/sec) (41)
91x10

Al-12



Since this modified ACPS will still limit cycle back and forth
through the attitude deadbands thus, producing a force F with
alternately opposite directions, the net result of these small AV's
on the orbiter's orbit should be negligible.

Assume that the forward and aft firing tail pod thrusters are

used to control pitch, the forward and aft firing wing pod thrusters
are used to control yaw, and the up and down (+Z axis) firing wing
pod thrusters are used to control the roll axis. Note that from
figure Al-l, the wing pods are located 11 meters (36 feet) aft of
the orbiter center of mass (C.M.=11 ). Also note that it is im-

possible to produce a roll control torque without producing a large
pitch component due to the location of the roll thrusters with re-
spect to the orbiter's center of mass. The resulting MIB's about
the three control axes due to firing these three types of thrusters
are:

a. Pitch control thrusters (forward and aft firing tail
pod engines):

1) (MIB) x=(MIB)z=0

2) (MIB)y=Fy tf=l 980 N-m-sec (1 440 ft-lb-sec)

b. Yaw control thrusters (forward and aft firing wing pod
engines):

1) (MIB) ,(MIB) =O

2) (MIB)z=0.5 Ft tf=l 980 N-m-sec (1 440 ft-lb-sec)Z z f

c. Roll control thrusters (up and down firing wing pod thrusters):

1) (MIB) z=

2) (MIB)y=FC.M. tf= 1 980 N-m-sec (1 400 ft-lb-sec)

3) (MIB)X=0.5 Fx t =1 980 N-m-sec (1 440 ft-lb-sec)
X xf

Depending on how this system's firing logic is instrumented and the
initial conditions of the pitch axis when the first roll axis thruster
firing occurs, the additional pitch MIB caused by the roll axis thrusters
can either cause fewer or additional pitch axis thruster firings, thus
increasing or decreasing fuel consumption. To estimate the fuel con-
sumption for this modified ACPS system, assume that the pitch coupling
moment due to a roll thruster firing is zero. The resultant weight
of fuel consumed per orbit equals

Al-13



0.102(MIB)T Ftf 1
WOF/orbit 40 + I) (42)40 i I I I

o sp xx yy zz

For this modified orbiter ACPS system,

WOF/orbit=24.4 kgf/orbit (53.8 lb/orbit)(43)

The weight of fuel per day equals

WOF/day_(24)(3 600) WOF/orbit=370 kgf/day
T

0

(815 lb/day) (44)

The use of either the baseline or modified ACPS system would
also make the problem of meeting the final stabilization require-
ments of the ASM experiments more difficult as shown in appendix
B3.4. Due to the firing of these large ACPS thrusters, any slight
offset of the experiment center of mass from the center of rotation
of its fine stabilization system will result in a large disturbance
torque being coupled through the isolation system to the experiments.
For a detailed discussion of this problem the reader is referred to
Appendix B3.4.

The conclusions of this analysis are:

a. For both the baseline and modified ACPS systems, the fuel
consumption is independent of the stabilized orbiter orientation.
The fuel consumption for the baseline ACPS is 1 670 kgf/day
(3 660 lb/day) and for the modified ACPS, it is 370 kgf/day
(815 lb/day).

b. For the baseline ASM mission duration of 7 days, these
large fuel consumption rates would result in a heavy orbiter
stabilization system.

c. The combustion by-products due to these large fuel con-
sumptions are a source of experiment contamination which could
degrade the experiments or cause them to be shut down.

d. Using either the baseline or modified ACPS system makes
the problems of meeting the final stabilization requirements
of the ASM experiments more difficult. (See appendix B3.4.

Al-14



A1.2. SIZING OF X-POP SHUTTLE ORBITER CMG STABILIZATION
SYSTEM

This CMG system was sized based on the gravity gradient momentum
that must be stored per orbit. The following assumptions were used
to size the CMG system.

a. The desired shuttle orbiter attitude is the X-POP attitude
shown in figure Al-3.

b. The shuttle orbiter is inertially held in its desired
orientation during the primary experimentation period eE

denoted in the figure. The length of this period, t, is
3 550 seconds.

c. The CMG's are desaturated during the secondary experimenta-
tion period also denoted in the figure.

d. The CMG system is assumed to have a shuttle orbiter maneuver

capability WAN of 2.91x10
-

4
radians per second (1 degree per

minute).

For a shuttle orbiter stabilized in the X-POP attitude shown in
figure A1-3, the gravity gradient torques acting on the orbiter are

2
Tgx=3w

°
a a (Izz-I )yy (1)

Tgy=3w2 a az (Ixx-Izz) (2)

2
T =3w 2 a a (I -I (3)

gz 0 x y yy xx

where ax, ay, and az are the components of the local vertical vector

shown in the figure and w is the orbital rate. For a 270 NM cir-

cular orbit, wo equals 1.10x10
- 3 radians per second. From figure

A1-3, the vector a equals

a 0
=

a
y I = cosw t (4)

az sinw tz 0

Al-15



* Secondary
Target

Beginning of
occultation
period

* Primary
Target

primary experimentation
period = 1.244T (59.1 min.)

\z

Y

e.. primary occultation \
period - 0.756w (34.9 mi

(Secondary
Experimentation Period) 270 n.m.

circular orbit

End of
occultation
period

Figure Al-3. Sketch of X-POP Stabilized Shuttle Orbiter With a Double
Gimbal ASM Experiment Pointing System
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Assume the orbiter is misaligned from the true X-POP attitude by
two small rotational angles c and E about the Y and Z axes,

respectively. The resultant local vertical vector a' equals

aI

Y

az'
z1

1 C
Z

-E
z

E
£

-E

1 0

0 1

C cosw t-E sinw t
^- y 0

a'= cosw t

sinw t

a
y x

a
y

_ az

(5)

Assume that e and c are equal (Ey=EZ =). The resultant gravity

gradient torques are

23w

T '= o
gx 2

3w
T '= °
gy 22

3w
T ' 
gz 2

(I zz-Iyy )sin2ot

(I Z-Ixx )[l-cos2wot-sin2wot]

(Iyy-I)xxe) l+cos20ot-sin2w t]

(6)

(7)

(8)

Integrating the above torque equations results in the gravity
gradient momentum that the CMG's must store.

3w
H =fT 'dt=- 0( -I )cos2w t
gx gx 4 zz yy o (9)

H' IfT 'dt=
gy gy

3w
o

4 (Izz- xx 0[2 o

-sin2w t+cos2w t]
O O

H gz=Tgzdt=gz gz

3w

- (Iyy-T xx)[2wot4 yy- xx 

+sin2wot+cos2wot ]

Al-17
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The gravity gradient momentum that is stored in the CMG's has two

components; they are (1) the accumulated momentum H
a
due to the

constant axial gravity gradient torque biases and (2) the cyclic
-4

momentum HC due to the cyclic gravity gradient torques. The axial

components of H and H are

X axis: H a0 (12)
ax

3w
H =- 0 T -T \ cs.w. t (i3)
cx 4 '-zz yy o

23w 2
Y axis: H 0 (I I )Et (14)ay 2 (Izz xx

3w
Hy 4 (I z-I xx)[cos2wt-sin2w tot (15)

3w 2
Z axis: H 0 (I -I )£t (16)

az 2 yy xx
3w

Hz 4 (I yy-Ixx )[sin2wot+cos2w t] (17)
CZ 4 y xx O

-4.
The magnitude of the accumulated momentum Ha equals

H-4 2 2 2 322 2 2
a ax ay az

Assume that c equals 1.745x10- 2 radian (1 degree). The momentum

IH81 accumulated during the primary experimentation period (t -
3 550 seconds) equals

IH I=1 200 N-m-sec (882 ft-lb-sec) (19)

The magnitude of the cyclic momentum Hc equals

Jtc H 2 +H 2IH I -|HC +Hcy +Hc (20)cx cy cz

Since the shuttle orbiter inertias I and I are approximately
e-qua , |HC ca b aproyy zz

equal, IH
cl

can be approximated by
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IH1 3w= [{(I yy )2 +2 (I zz )2 +E2 (I -I ) ]cos 2 tc 4 zz yy zz xx yy xx o

+ 2 -[(I-Ix) 2 +(I -Ixx) 2]sin2 2t} 1 /2 (21)
zz x y Xx0(21)

The peak cyclic momentum 1HcJ
p

corresponds to t equal to zero.

3w2 2 2 2
jH|p.= . (IZz-Iyy) +E (I -I ) + (I -I )2]/2 (22)

jH|p =314 N-m-sec (231 ft-lb-sec) (23)

The CMG system besides storing the gravity gradient momentum must also
store the momentum due to aerodynamic torques, Haero. Assume H

equals

Haero=0.05( IHal + Hcl p) (24)

H =75.7 N-m-sec (55.6 ft-lb-sec) (25)aero

To meet the shuttle orbiter maneuvering requirement of 2.91x10- 4
radians per second (1 degree per minute), the CMG system must impart
the following angular momentum to the orbiter in order to maneuver
it about its axis of maximum inertia (i.e., Z axis) at the above
rate:

HMAN=IzzwMAN=2 490 N-m-sec (1 830 ft-lb-sec) (26)

After the shuttle orbiter is placed in its X-POP attitude by
the baseline orbiter ACPS system, the CMG system takes over control
by absorbing the remaining residual momentum left by the baseline
system. Assume that the shuttle orbiter is in a torque-free environ-
ment. For the shuttle orbiter baseline ACPS, this assumption was
shown to be valid in section Al-l. Each vehicle axis will limit
cycle between the limits of the ACPS attitude deadband +Oo. Figure

A1-2 is a sketch of this ACPS attitude deadband. The lower limit,
-eo, is designated state a, and the upper limit is designated state
b. Assume that the ith vehicle axis is at state a. The appropriate

ACPS thrusters will fire sending the i axis towards state b, the
axial angular velocity bab equals
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Wab Wi+Wab (0) (27)

where xi is the change in angular rate about the ith axis due ti

a single ACPS firing. The position of the axis 0ab equals

0ab [Wi+Wab(0)]t-o °
(28

When the axis reaches state b, the thrusters fire once more sen

the ith axis back towards state a. The angular velocity, 0 ba,

the axis travels back towards a equals

Wba=-Wi+ba (O) (2'

eba [-Wi+?ba (0)]t+8o (31

From equation 28, the time tab for the axis to traverse the de

from state a to state b equals

ab=8= [wi +ab (0i ]tab - 8

28
o

ab Wi+ba (O)

From equation 30, the time tba to return to state a equals

8 ba=-8o= [-Wi+ Wba(O) ]tba+8o

28

ba W i-ba (0)

Under steady state conditions

tab tba

Therefore, using equations 31, 32, and 33,

wab (O)=-ba(O)
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Since the angular velocity of the it
h
axis cannot change instan-

taneously at either boundary of the deadband, the following

expressions can be written using equations 27 and 29.

ba(0) =i+wab(0) (35)

Wab(O) =-i+ba() (36)

Using equations 34, 35, and 36, the following expressions for

Wab(0) and Wba(0) can be written

i
(37)Wab (0) 2=- (37)

Wba(0)= (38)

The residual momentum that the CMG's must absorb equals

I = 2 2 02 2 (39)
Htran ii ba (0)=0.5 i (39)
Htran=~ ii bi

From section Al.l., wi equals

w =2.81 mrad/sec (0.161 deg/sec)

w =0.482 mrad/sec (27.6x10- 3 deg/sec)

wz=0.463 mrad/sec (26.6x10-3 deg/sec)

Substituting the above values of wi into equation 39, Htran equals

Htran=3 390 N-m-sec (2 500 ft-lb-sec)

The CMG system for stabilizing the shuttle orbiter in a X-POP
attitude is sized in table A1-2. The total CMG angular momentum
storage requirement is 9 060 N-m-sec (6 668 ft-lb-sec). This momentum
storage requirement can be met by three Skylab ATM CMG's. The total
CMG momentum capability of three ATM CMG's is 9 350 N-m-sec. (6 900
ft-lb-sec) which exceeds the required momentum storage capability by
290 N-m-sec (232 ft-lb-sec).
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Table A1-2. Sizing of a CMG System for a X-POP
Stabilized Shuttle OrbiterIj~~~~~ I~~

IHal

IHCIP

H
aero

Sub Total

Safety Factor

Maneuver HMA
N

Transitional Momentum
(from ACPS to CMG control)

Total CMG Momentum
Storage Requirement

1 200 N-m-sec

314

76

N-m-sec

N-m-sec

1 590 N-m-sec

x2

3 180 N-m-sec

2 490 N-m-sec

3 390 N-m-sec

9 060 N-m-sec

(882 ft-lb-sec)

(231

(56

(1 169

ft-lb-sec)

ft-lb-sec)

ft-lb-sec)

(2 338 ft-lb-sec)

(1 830 ft-lb-sec)

(2 500 ft-lb-sec)

(6 668 ft-lb-sec)
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A1.2.1. CMG Momentum Desaturation System - When CMGs are used to
control and stabilize the attitude of a spacecraft, an additional
torquing system is required to prevent the CMGs from becoming
saturated. This additional torquing system is referred to as a
momentum desaturation system. For the CMG stabilized shuttle
orbiter, there exists three feasible methods of performing
desaturation; they are reaction control, magnetic, and gravity
gradient desaturation.

An RCS desaturation system generates the required desatura-
tion torques by employing mass expulsion thrusters. This system
has a high torque capability and therefore, can readily desaturate
the CMGs. The resulting large desaturation torques preclude the
use of this system during experimentation because it would sig-
nificantly disturb the experiments' attitude control system and
prevent it from meeting its desired pointing and stabilization
performance. The system's principal disadvantage is that the mass
expelled by an RCS is a probable source of experiment contamination
that could degrade or cause the experiment to be shut down. This
RCS contamination problem is the driving force behind the rationale
for selecting a CMG system instead of an RCS to stabilize and
control the attitude of the shuttle orbiter. For this reason, an
RCS desaturation system is eliminated as a candidate.

A magnetic desaturation system generates a magnetic dipole

moment M onboard the vehicle which interacts with the earth's mag-

netic B field to produce the required desaturation torques. The

magnetic moment M is generated by energizing electromagnets or
flat magnetic air coils. A three-axis magnetometer is needed to

measure the earth's B field in order to compute the required M.
This system's major problem is that the large magnetic field
produced by a system large enough to desaturate the shuttle
orbiter CMGs is a severe source of ASM experiment magnetic con-
tamination. Like the RCS desaturation system, the magnetic
desaturation system is eliminated as a candidate because of
experiment contamination.

A gravity gradient CMG desaturation system utilizes the
natural gravitational forces between the spacecraft and the earth
to generate the desaturation torques. In order to take advantage
of these torques, the spacecraft must be maneuvered to a favorable
gravity gradient orientation. This method of desaturating the
CMGs requires no additional equipment or fuel and only depends
on the ability of the CMGs to maneuver the vehicle. For an X-POP
stabilized shuttle orbiter, the required gravity gradient de-
saturation maneuvers are small and could be performed at the
beginning and the end of the primary occultation period while
the telescope is being slewed to the secondary and primary targets,
respectively. A gravity gradient desaturation system unlike an
RCS or a magnetic system is not a source of experiment contamina-
tion. This is the main reason for selecting a gravity gradient
desaturation system.
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Ideally, if the shuttle orbiter is stabilized in a true X-POP
attitude and the torque environment is due only to the gravitational
pull of the earth, the momentum stored in the CMGs would be cyclic
and thus, no desaturation system would be needed. Such an idealiza-
tion is not realistic. Assume that the orbiter is misaligned from
a true X-POP attitude by two small rotational errors e about both
the Y and Z axes. The resultant gravity gradient torque equations
are n

3W 
Tg 2 (Izz-Iyy)sin28 (40)

Tgy 2 (Izz-Ixx)E[l-cos26-sin2e]

y 2 

Tgz 2 (Iyy-Ixx )[l+cos2e-sin20]

(41)

(42)

where 8 equals w t. These gravity gradient torque equations cor-

respond to the primary experimentation period 0E in figure A1-3. At

the beginning of the occultation period c', assume that the fol-

lowing desaturation maneuvers Cxd, Cyd-C, and c d-C are

about the X, Y, and Z axes, respectively. Assume these
are made instantaneously. The resultant local vertical

ad equals

ad yd 
I

= - zd

L yd

performed

maneuvers
vector

ezd -Eyd ]
1 ECxd cosO

-Exd 1 sinO]

C azd CSO-yd sinO

-Cxd c ose+sine 

(43)

Substitute ad into the gravity gradient torque equations 1 through

3 and assume that any products or squares of eCd, eyd,o and Ezd
2 2 2

equal zero (Cxd =Cyd =Czd wCxdEyd=CxdCzd*....O). The resultant

gravity gradient desaturation torque equations are
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3w 2
(d) o

Tg 0 (I zz-Iyy)[Sin282ExdCos28] oTgx 2 zz xx
23wz

(d) 0
T d 3 (Izz-Ix)[Cyd(1-cos28)-£ sin28]gy 2 za X ydz

2
(d) 3oT (I -I )IC (l+cos28)_cy dSin2n

]gz 2 yy-xx)

(44)

(45)

(46)

To desaturate the CMGs completely, the net accumulated angular
momentum during one orbit must be zero. To compute representative
desaturation maneuvers, assume that the shuttle orbiter is stabilized
as shown in figure A1-3. Since the net accumulated momentum must be
zero, the following equations must be satisfied.

0.622w

-0.622T
w

1

O

1.378w7

T dt+f T (ddt
gx 0.622w gx

O

0.622w

/-0.622 
xT d+ 1 378622T (d)deO=
gx W 0.6227 gx

0.6227[

H -f T
Y -0.622w gY

0.622wn

w
1
-0.622w

0

1.378w

dt+f o T
0.622r

0

T d+ --
gy w0

0

(d)dt

gy

1. 378 

f0.622 T (d)de=o0.622w gy

0. 622n

H =J 
Z -0.6227

1.378w7
w

Tg dt+/ o T0
0.622 gz

o
o

0.622 1
f-0.622 T d+ l

0.622 gz 0

1. 378 (d)

0.622[ Tgz

Substitute the expressions for Tgi and Tgi(d) (i-x,y,z) into thegi gi
above equations.
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(d) dt

1

0
(49)

o

---



3w
20.6222rr

x 2 (I z-I)-0.622U sinOd

1. 378r

+10.622r (sin26-2Exd cos2
8
)d } (50)

3w
Hy= 2 (I- -Ix ){E 0 6 2 2 (1-cos28-sin2O)de

2 Hy 2 I -0.6227r

1.378r
+f0.6 22 7 [Eyd(l-cos20)-ezdsin2e]de}=o (51)

3w
aw, {0.622Tr

H= (Iyy Ixx)fEc0 622 (l+cos2e-sin28)de
z 2 yy xx -0.622~

1.378r

+o0.622n [Ezd(l+cos20)-Eydsin28]d6}O (52)

Forming the integrations in equation 38 through 40,

H = -2.08w0 (I ZZ-IYy )E x (53)

H =2=2.20w (Izz-Ixx)(+0.365Eyd)=O (54)

H =1.535w (I yy-Ixx ) (+0.955zd)= (55)

From the above equations, Exd, £yd' and czd equal

E; =0 (56)
xd

E = -2.74e (57)

E zd -1.05c (58)

The resulting desaturation maneuvers about the X, Y, and Z axes
are 0, -3.74E, and -2.05E, respectively. The resultant eigen-
axis desaturation maneuver ed equals

° .7 4 )2 2
C -E (-3.74) +(-2.05) =4.26c (59)

A1-26



At the beginning of the desaturation interval e , the desaturation

maneuver Ed is performed. Then, at the end of this interval, the

orbiter is maneuvered back to its X-POP attitude that it was in

just prior to desaturation. Assume that £ equals 1.745x10
-2

radians (1 degree), the resultant eigenaxis maneuver Ed equals

7.44x10-
2
radians (4.26 degrees). This maneuver Ed is relatively

small and should not interfere with the pointing of the ASM ex-

periments at a secondary target. If the orbiter has a maneuver

capability of 2.91x10-
4 radians per second (1 degree per minute),

the desaturation maneuver Ed will take approximately 4 minutes

to perform.

By sampling the momentum stored in the CMGs during the primary

experimentation period 0
E
, the accumulated momentum H

a
that the

gravity gradient desaturation scheme must desaturate is determined.

From H , the appropriate gravity gradient desaturation maneuvers
a

are then computed.

A1.2.2. Pseudo-Axis-of-Inertia Alignment Scheme - The pseudo-
axis-of-inertia alignment scheme attempts to place the shuttle

orbiter in an orientation where the average momentum stored in
the CMGs during-an orbit is minimized. By minimizing the average

momentum stored in the CMGs, the required gravity gradient CMG
desaturation maneuvers are also minimized. If this system
operated perfectly, the average CMG momentum would be zero thus,
eliminating the necessity of desaturating the CMGs. At the end
of each desaturation interval, two maneuvers £ya and cza with

respect to the desired X-POP attitude are performed about the

orbiter Y and Z control axes, respectively. These maneuvers
are performed in an attempt to minimize the accumulated momentum
stored in the CMGs during the next orbit. To illustrate how this
system operates, assume that the shuttle orbiter's principal and
control axes are slightly misaligned. Assuming that the orbiter
is stabilized in a X-POP attitude with its X control axis per-
pendicular to the orbital plane, these axial misalignments will
produce a nonzero average momentum to be accumulated in the CMGs
thus, necessitating a momentum dump. Also, the orbiter's products

of inertia Ixy, Ixz, and Iyz are not zero due to the axial mis-

alignments. The resultant gravity gradient torque equations are:

A1-27



T =3 2 {a "a "z(I -I )+a a ""I
gx o y z zz yy x z xy

-a "a "I +[(a -(a ) -(a (60)
x y xz z y vz

T =3w 2 a "a "(I-I )+a "a "I
gy 0 x z xx zz x y yz

-a "a "I +[(a")
2

-(a ") 2z } (61)
y z z z

T =3w a "a "(I -I xx)+a "a "I
gz o x y yy xx y z xz

-a "a "I +[(a 2,) -(a ")2 ]I } (62)
x z yz y x xy

where the local vertical vector a" equals

af 1 aE 
x za ya x

a"= a " -- E 1 0 a Y (63)y za

a 0 1 a
z ya 

The local vertical vector a was defined in equation 4.

a= a cOSwo t (4)

a sinw t
z 0

Substituting 4 into 63, a" equals

a a" C zCos t-yE sinw t

all = a I cosw t (64)

aI " sinw t

Compute the averages of a "a "( a "a" a " ( 2
y z xz x y x y

and (az ) neglecting all terms that contain products or squares

of E and ¢
ya za
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a "a "-0 (65)
y z

a "a ya (66)
x z 2

C
a a -'za (67)
xy 2

(a 2 (68)

(a, ,) 2 (69)

y 2 1

(a ")2 (70)

Substituting equations 65 through 70 into equations 60 through 62,
the average gravity gradient torques are:

23w 2
-T ,[c _I ° E C I + 1 (71)

gx 2 ya xy za xz
23w 2

gy 2 ya (Ixx-zz)zaiyz+Ixz] (72)Tgy 2
2

3w
T -- (I -I )+C I +I ] (73)

gz 2 za yy xx ya yz xy

By integrating the above average gravity gradient torques over one
orbit, the resultant average gravity gradient angular momentum
equals

H gx= -3 [y a E I + I ] (74)
gx 0 ya xy za xz

H = -3w
O
[E (I -I )-E I +Ixz ] (75)

gy [ ya xx zz za yz xz

Hgz 3irnw[C z(I y-I x)+CE I +I (76)gz o za yy xx yayz xy

Since the orbiter's principal and control axes are only slightly
misaligned, the orbiter's products of inertia can be approximated
by
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Ixy oz (Iyy-I) (77)

Ixz=E:O(Ixx-Izz) (78)

I =e (I -I ) (79)
Iyz ox(I zz -Iyy)

where Cox, Coy, and Coz are the misalignments between X, Y, and Z

principal and control axes, respectively. By judiciously sub-
stituting the above approximations for I xy, I , and I into

CquatiouLs7 , .ILLu, 76L adU buy Ii-glectlng all te-I6 LcnaL cuntain

products of Eoz, Eoy, and E with E and Eza' the average gravity

gradient momentum equations are

H =- (80)
gx

H gy -3rw [ Cya (Ixx-I )+Ix ] (81)

Hgz 3two[E za(Iyy-Ixx)+Ixy] (82)

If c and E are zero, the momentum that the CMGs will accumu-ya za
late during one orbit equals

Hx CMG 0 (83)

H CMG' -3w I (84)

Hz CMG 37o Ixy (85)

Equations 80 through 82 can be written as

H -0 (86)
gx

gy 1ya+Hy CG (87)
H -YK ICa +H y(88)

gz K2 za z CMG

where
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K1=3Two (Izz-Ixx)

K2'3Two (Iyy-Ixx)

If the system operates perfectly, H and H will equal zero.gY gz

Hgy=KlCya+Hy CMG
= 0

(89)

HgzWK2Cza+Hz CMG (90)

From equations 89 and 90, the pseudo-axis alignment maneuvers eya

and Eza equal

_ y CMG (91)
ya K 91)

z CMG
za K (92)

H and H CMG are determined by sampling the momentum stored in

the CMGs. H and H were assumed to be due to principal and

control axis misalignments, they could have also been partially or
entirely due to aerodynamic torques acting on the orbiter; and the
system would still have worked just as well. Depending on how well
this pseudo-axis alignment scheme works, it may not be necessary to
desaturate the CMGs every orbit.
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A1.3. SI7ING OF X-POP SHUTTLE ORBITER LOW THRUST RCS STABILIZA-
TION SYSTEM

The sizing of this shuttle orbiter low thrust RCS stabiliza-
tion system is broken into two parts. First, the RCS engine thrust
level F as a function of the RCS attitude deadband is determined.
Second, the total RCS impulse EFAt required to stabilize the shuttle
orbiter during a 7-day ASM mission is computed. EFAt is directly
proportional to the amount of RCS fuel required.

A1.3.1. Sizing of the Shuttle Orbiter RCS Stabilization System
Engine Thrust Level - The proposed low thrust shuttle orbiter RCS
atnh-t1~at-imnn avotpm ahnilldr have engines that are

a. Small enough to prevent excessive limit cycling
between the limits of the attitude deadband.

b. Large enough to insure that the vehicle will not
exceed the attitude deadband.

This RCS shuttle orbiter stabilization system was sized using the
following assumptions:

a. The RCS engine impulse FAt is the same for all
engines.

b. The effective RCS engine impulse duration At equals
80 msec. An impulse duration of 80 msec was selected
to reduce the raw fuel loss per impulse to an acceptable
level.

c. The engines are fired in pairs in order to produce a
pure torque moment (no translational motion).

d. The RCS is decoupled such that an engine pair firing
produces a torque about only one control axis.

e. The moment arm Z between engine pairs is 18,3 meters
(60 feet).
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Assume that the orbiter's ith axis has just impinged on the
upper deadband limit due to gravity gradient torques acting on the

vehicle's it h axis. A RCS engine pair is fired imparting a single

momentum impulse bit, MIB-FAtt, to the it h axis sending it towards
the lower deadband limit. The engine impulse FAt should be small

enough to allow the gravity gradient torques to decelerate the ith
axis before it has traversed one quarter the width of the deadband.

Figure A1-4 is a sketch of the RCS deadband. The i axis equations
of motion are

Wi- git-o (1)

1 2
i 2 agit -Woit+e (2)

where

xi is the ith axis angular velocity

ei is the rotational displacement of the ith axis

*gi is the ith axis acceleration due to the average

rectified gravity gradient torque

*ol is the angular velocity imparted to the ith axis

due to one MIB firing

6o is the upper deadband limit' (0.5 deg - 8.725 mrad)

t is the time from when the i
t
h axis impinged on the

deadband's upper limit.
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Figure A1-4. RCS Attitude Deadband for Computing Upper RCS Thrust Level
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0
When i reaches 2, W should equal zero. Substitute these values

of 0
i
and wi into equations (1) and (2).

O=agit-woi (3)

0
o 1 222git t XW t+0 (4)

From equation 3,

oi
t a (5)

agi

Substitute equation 5 into 4 and solve for woi

e 1 oi oi
2 2 gi a8i oi ag (6)

gi gi

woi=(agie0)/2 (7)

agi equals

a -gilra (8)
gi Iii

where

Tgilra is the average worst case rectified gravity

gradient torque acting on the i t h axis

Iii is the moment of inertia for the ith axis.
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Substitute equation 8 into equation 7

Tgi raOo 1/2

oi ii7 (9)

One MIB equals

MIB-iioiFiAt X (10)

From equations 9 and 10, the RCS engine thrust Fi equals

I w 1/2

Fi' iAt At(TgilraIii eo) (11)

The average worst case rectified gravity gradient torques Tgilra

acting on the three orbiter axes are

gx ra 7 o ZZT8 ram-w (I ZZ-I ) (12)

gylra 3 2o izz ixx (13)

Tgzlra 7r (14)a yx

where w is the shuttle orbiter's orbital rate. For a 270NMo

circular orbit, w0 equals

wol.lO.10x1 3 c (15)

Tg xra Tgy ra, and T equal

T ra- 0.384 N-m (0.291 ft-lb) (16)

Tgy lra.8.31 N-m (6.12 ft-lb) (17)

Tg lr 7.94N-m (5.84 ft-lb) (18)53 ra
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Substituting the appropriate values of i, At, Iii, and TgiIra into

equation 11, the RCS engine thrust F
i
equal

F =5.10x10 2 1/2 (19

F -5.65x103 1/2 (20)
y o

F -5.62x103 o 1/2 (21)
z 0

Since all the RCS engines are assumed to be identical the X axis
determines the upper limit on engine thrust F.

F =5.10x10 2 0 1/2 (22)
max o

A RCS engine pair is cormanded to fire when the i axis im-
pinges on one of the attitude deadband limits. Assume that the
RCS firing logic is governed by the following linear rate plus
position law.

I i +Kpil-E (23)

E is a positive constant scalar that corresponds to the attitude
deadband limit. When the above equation is satisfied, a pair of
RCS engines are fired.

Assume that the ith axis has just impinged on the RCS upper
deadband limit. This does not necessarily mean that 80 equals 08,

th
but only that equation 23 is satisfied. Since the i axis has
impinged on the upper deadband limit, the absolute value brackets
can be removed from equation 23.

'KRILIi+Kp0,=E (24)

An appropriate RCS engine pair is fired accelerating the i axis
towards the lower deadband limit. Using figure A1-5, the following

equations of motion for the it h axis can be written.
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Figure A1-5. RCS Attitude Deadband for Computing
Lower RCS Thrust Level
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wi
' -ai ti+ io (25)

0i 2 iti +iot+ io (26)

where

atx is the resultant acceleration due to gravity and

the RCS engine pair firing

Xi is the i
t
h axis angular velocity at the time of

RCS firing

B is the it h axis rotational displacement at the time
of RCS firing

ti is the time from RCS firing

Substitute equations 25 and 26 into 24,

1 2
KR[-citi+io ]+ K[- aiti ti iot+0io]

'
E

or

1 2
K tio+ eio- Kaiti+ [ ioti- 2 aiti ]-E (27)

Since iKRwio+4 eio equals E,

-K aRiti+1(PIwioti -a iti ] O (28)

Solving for t
i
from equation 28,

Wio KR

ti-2[t ] (29)

In order to prevent the it h axis from exceeding the deadband E, the
above expression for tt must be zero or negative. If t

i
is allowed

to be positive, the i axis will exceed the attitude deadband
causing the RCS to continue to fire for as long as the deadband is
exceeded. From equation 29,
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t Wi -

or

ai> 0 Wio (30)

In order to solve for the minimum allowable value of (i, wio must

be computed. The following assumptions are made:

The RCc stm e 
4

.fires w.ke *WA 4 th 4- _*#4#..A- ____
equals the upper attitude deadband limit, KPOtE.

b. The RCS system imparts one MIB when the gravity gradient
torque changes sign. The maximum average rectified gravity

gradient Tgilra helps accelerate the ith axis towards the

lower attitude deadband limit.

The resulting equations of motion are

Win agi t- ji At (31)

1 2 cait -(j iAt)t+8 (32)

where ai is the acceleration about the it h axis due to one RCS

engine pair firing for At seconds. When the ith axis reaches the
lower attitude deadband limit, 0i equals -BO and wi equals -wio'

~-io' -_agit-a iiAt

or

1W -a it+aj At (33)
eio git ji tt + 

T Oa gi jii (34)
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Using equation 34 to solve for t,

-a jAt+[ (a At) 2+4ai0o] 1/ 2

agi

Substituting equation 35 into 33, wio equals

Wio[ (ajiAt)2+4 agi]1/2

Substitute equation 36 into 30,

Mi > KR [jia gi

Note that equation 30 was derived assuming that the RCS engines were
fired to counteract gravity gradient torques that would have cause

the ith axis to exceed the attitude deadband limit, therefore

i ji -gi

Substitute equation 38 into 37,

aji-agi> .[(ajiAt) 2 +4ai]1 /
2

aji-Ogi; f R. tcji +4gi2

Solving equation 39 for aji, aji equals

a agi +
ji > 2 +

1l-(- At) I]
KR

4 gi 0

[1-(-, ) At)2]

2
a[

[l(k

At

) At 2 1/2
) At)2]
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Equation 40 can be approximated by

ji > () [
4

i ° 11/2 (41)
L-( At)

2

KR

'j i equals

Ti Fi

]i Iii Ii (42)

where Tji is the torque generated about the ith axis due to one
RCS engine pair firing. From equations 41 and 42, the lower limit
on engine thrust Fi equals

2 K2 [I Tg Ilra eo 
iKRFi= . .J-)1~r8 1/ 2 (43)

l-(- At)

Assume that - equals one. Substituting the appropriate values of

., At, Iii, and Tgilra into equation 43, Fi equals

1/2

Fx - 82 80 (44)

1/2
Fy - 9.15x10 80 (45)

1/2
F - 9.02x102 8 (46)

Note that F
x

is smaller than either Fy and Fz, and also note that

Fy and F
z
are almost twice as large as the maximum value of engine
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thrust F given in equation 22. The above values of F and F were

computed using the worst case average rectified gravity gradient
torque T ra and Tra , but the shuttle orbiter is stabilized ingy ra gzlra
a X-POP attitude in order to minimize these torques. For the X-POP
stabilized shuttle orbiter, T gyIr and TgzIra are due only to Y and

Z axis attitude errors. The actual value of Tgy ra and T zra are

estimated to be approximately two orders of magnitude smaller than
their worst case values, therefore the value of F given in

max
equation 22 is valid and the minimum value of F, Fmin, equals the

above value of F
x

1/2

F in=Fx =82 8o (47)

The limits on the RCS engine thrust level F are

Fmin < F max

82 81/2 < F < 510 1 (48)

Figure Al-6 is a plot of Fmax, Fmin, and a nominal thrust level Fnom
as a function of the attitude deadband +8 The selected nominal

-o
value F equals

1/2

Fnom-260 80 (49)

For an attitude deadband 8o ranging from 0.291 mrad (1 min) to

8.7 mrad (0.5 degree), the nominal thrust level Fno
m
varies from

4.45 N (1 lbf) to 24.3 N (5.7 lbf), respectively.

A1.3.2. Sizing of the Shuttle Orbiter RCS Stabilization System

Total Impulse EFAt Requirement - Assume that the shuttle orbiter
is stabilized in the X-POP attitude shown in figure A1-7. The Rravitv
gradient torques acting on the shuttle orbiter are:
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T =3
2 a a (I -Iyy)

gx 0o y zzz yy

Tgy=3WO axaz (Ixx-I z)

T g3 a a (I -I )
gz o x y yy xx

where ax, a , and a are the components of the local vertical unit

vector a shown in figure A1-7. The components of a are

a =Ox

a -cos w t
y o

a =sin w t
z 0

Assume the shuttle orbiter is misaligned
titude by two small rotational angles C

axes, respectively. The resulting local

a ' 1x

a'- a a -m
y z

a C
z y

a

from the true X-POP at-
and E about the Y and Z

z
vertical vector V' equals

Ez-E a
z y x

1 0 a

0 1 a z

c cos w t -e sin w t
z o y o

cos w t
0

sin w t
0

Assume that ¢y and c z are equal (EyECz=E). The resultant gravity

gradient torques are
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T '=3w a' a ' (I -I )
gx o y z zz yy

3w
o (Iz -I ) sin 2w t
2 zz y o

T '=3w 2 a ' a
gy o x z

2

(57)

(I xx-I )

2w0t-sin 2w t]

T '=3w 2 a ' a ' (I -I )
gz o x y yy xx

3w 2
= --- (I yy-I ) E [l+cos 2w t-sin 2w t]

2 yy xx 0 0

(58)

(59)

The total required impulse EFAt that the RCS must supply is directly
proportional to the accumulated rectified angular momentum acting
on the three vehicle axes. The rectified angular momentum Hgi{XPO P

accumulated during one orbit due to the above gravity gradient torques
are

Hgx X-POP

21r

0

{Tgx 0 dt o(zz yy) (60)

2iT

°0 I|T 'Idt-
0

3(4+n)w o0E

2 (Izz-Ixx)

2n
I0 ° 3(4+7)w E

' I|T Tg
z

dt= (I -I )) z2 yx

(61)

(62)

Assume that E equals 1.745x10- 3 radian (1 degree). The accumulated
momentums that the RCS system must counteract each orbit are
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H gXPOp- 2 245 N-m-sec/orbit (1 650 ft-lb-sec/orbit) (63)

H gyIX-POp 1 470 N-m-sec/orbit (1 080 ft-lb-sec/orbit) (64)

H gzlX Op= 1 400 N-m-sec/orbit (1 030 ft-lb-sec/orbit) (65)

The total rectified gravity gradient momentum that the RCS system
must absorb equals

Hglx -PopHgx IX-POP+Hgy X-POP+Hgz IX-POP

= 5 115 N-m-sec/orbit (3 760 ft-lb-sec/orbit) (66)

The total impulse EFAtlgg per orbit needed to counteract HgX_ pOp

equals

EFAt gg/orbit- g X-POP

=560 N-sec/orbit (126 lb-sec/orbit) (67)

The total mission impulse EFAt Igg equals

EFAt gg/mission=59 400 N-sec/mission (13 400 lb-sec/mission)(68)

The RCS system besides absorbing the rectified angular momentum
HglX pop must counteract the rectified momentum due to aerodynamic

torques, Haerolr
a

t Assume that Haerolr
a

equals

Haero ra
' 0 .0 5 HgIx_pop

-256 N-m-sec/orbit (188 ft-lb-sec/orbit) (69)
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The impulse ZFAtiaero per orbit needed to absorb H aeror
a

equals

aero a2 Her orra

EFAt er/orbitu ae o raaero £

=28 N-sec/orbit (6.3 lb-sec/orbit) (70)

The total mission impulse EFAt aero equals

EFAt aero/mission-2 970 N-sec/mission (669 lb-sec/mission) (71)

EFAtJgg and EFAtIaero are the minimum total impulses

that are necessary to perfectly absorb the gravity gradient and
aerodynamic rectified angular momentum. During portions of the
orbit, the magnitude of the gravity gradient and aerodynamic
torques are too small to prevent the vehicle control axes from
limit cycling back and forth through the deadband. Assume that
the additional impulse expended due to this limit cycling EFATILC

per orbit equals

EFAt Lc/orbitO .25(EFAt I /orbit+EFAtl /orbit)

-147 N-sec/orbit(33.1 lb-sec/orbit) (72)

The total mission EFAtILC equals

FiAtILC/missionl15 600 N-sec/mission (3 520 lb-sec/mission) (73)

The average time per axis between each RCS pulse tf required

to stabilize the shuttle orbiter equals

t 1.71x10 F (74)
tf -(FAt) (74'
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where

(EFAt) '=FAt gg/orbit+FAt /orbit

+EFAtl /orbitLC

=735 N-m/orbit (542 ft-lb/orbit)

In figure Al-8, tf versus 0O is plotted for the nominal thrust level

Fnn
m
shown in figure A1-6. For an attitude deadband 80 ranging from

0.291 mrad (1 min) to 8.75 mrad (0.5 degree), the average time
per axis between RCS pulses tf varies from 103 to 605 seconds.

During the ASM mission, the shuttle orbiter is assumed to be
maneuvered on the average of four times a day or 28 times a mission.

A maneuver rate capability t0 of 2.91x10 radian per second (1
man

degree per minute) is assumed about the shuttle orbiter axis cor-
responding to its maximum moment of inertia (i.e.,Z axis). To per-
form this maneuver, the RCS system must impart the following impulse
to the shuttle orbiter 4(I

EFAtI /maneuver-
man

-3 260 N-sec/maneuver(734 lb-sec/maneuver) (75)

The total mission impulse EFAtl alloted for maneuvering is
man

EFAt man/mission=28 (EFAt man/maneuver)

-91 200 N-sec/mission(20 500 lb-sec/mission) (76)

After the shuttle orbiter is placed in its X-POP attitude by
its baseline ACPS, the low thrust RCS system takes over control
by absorbing the remaining residual momentum left by the baseline
system. Assume that the shuttle orbiter is in a torque-free en-
vironment. For the shuttle orbiter baseline ACPS, this assumption
was shown to be valid in section Al.l. Each vehicle axis
will limit cycle between the limits of the ACPS attitude deadband
+5 . Figure A1-2 is a sketch of this ACPS attitude deadband. The-o
lower limit,-9o,is designated state a,and the upper limit is de-

signated state b. Assume the it h vehicle axis is at state a.
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At this point, the RCS thrusters will fire sending the .i axis

towards state b. As the i axis traverses the deadband from a
to b, the axial angular velocity wab equals

Wab wi+Wab (0) (77)

where wi is the change in angular rate about the it h axis due to

a single ACPS firing. The position of the axis 8ab equals

-r I' n\-w, .I *-
'ab L'-i -ab T -J' \o ~'

When the axis reaches state b, the thrusters fire once more
sending the vehicle back towards a. The angular velocity Wba

and position 8ba as the axis travels back towards a equal

Wba-wi+Uba (0) (79)

8 ba= [-Wi+wba(0)]t+e o (80)

From equation 78, the time tab for the axis to traverse the dead-

band from state a to state b equals

abeo
=

[ i+W ab ()]tab-0 o

26

tab i ab()(81)

From equation 80, the time tba to return to state a equals

8 ba=,0o [ -wi+8 b a (O)] tba +o

28

ba Wi-_ba(0) (82)

Under steady state conditions

tab tba (83)
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Therefore, using equations 81, 82, and 83,

Wab(0) -Wba(0) (84)

Since the angular velocity of the it h axis cannot change instan-
taneously at either boundary of the deadband, the following ex-
pressions can be written using equations 77 and 79.

Wba(O) i+Wb () (85)

Wab (0) -wi+wba (0) (86)

Using equations 84, 85, and 86, the following expressions for
Wab(0) and Wba(0) can be written

Wi
Wab (0)- 2 (87)

(ba (0) 2 (88)

The residual momentum that can be absorbed thus equals

Htran-i IiWba(0)-0.5.L Iiiwi (i =x,y,) (89)
~~i i

From section Al.1, wi equals

w -2.81 mrad/sec (0.161 deg/sec)
x

w'0.482 mrad/sec (27.6x10 - 3 deg/sec)y

wz-0.463 mrad/sec (21.6xl0- 3 deg/sec)

Substituting the above values of xi into equation 89, Htran equals

Htran=5 865 N-m-sec (4 320 ft-lb-sec)

The transitional impulse EFAtjtra
n

that the low thrust RCS must
expend to absorb this residual momentum equals

2H

EF~tI tran - 642 N-sec (144 lb-sec)
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When an RCS system is pulsed, part of its fuel is lost at
the beginning and end of each pulse. This lost fuel is ejected
from the RCS as raw fuel. Figure Al-9 is presented to explain the
source of this loss. The pulse illustrated in this figure is
typical of an RCS system. The long rise and tail-off times
shown are important when an RCS thruster is being pulsed at a
high rate. The sources of the rise time are (1) valve opening
times, (2) ignition delays, and (3) incomplete mixing. Short
ignition delays tend to promote incomplete mixing by setting up
a high energy gaseous interface at the impingement point; the
propellants are blown apart. This lost fuel is very important
in iporrA r "I Fntn vnn#-4 4f tM4n 4C 1F.eso ar. . _

creased significantly or new chemical compounds different from
the normal combustion products are introduced into the experi-
mental environment. The curve shown in figure A1-9 is presented
to show approximately how the fuel loss varies with pulse widths.
To minimize fuel loss the pulse width should be as long as is
consistent with the shuttle orbiter stability requirements.

For an effective pulse duration At of 80 msec, it is esti-
mated that 5 percent of the fuel will be lost in the above
way. This lost fuel can be measured in lost system impulse
capability EFAtlost. For the 7-day ASM mission, the lost

system impulse capability equals

EFAtIlost/mission=0.05(ZFAtJ g/mission+FAt aero/mission

+EFAtILC/mission + FATJman/mission

+EFAtltran )8 450 N-sec/mission (1 900 lb-sec/mission) (90)

The low thrust RCS system impulse EFAt required for the
X-POP stabilized shuttle orbiter is sized in table A1-3. The
contingency factor of 2 is added to provide a safety factor, an
additional maneuver capability, and to account for other sources
of disturbances such as crew motion not contained in this fuel
budget. Much of this contingency fuel budget could be used if
the average number of maneuvers per day is increased above the
allotted four maneuvers a day, approximately one maneuver every
fourth orbit. Note that the largest single fuel budget item is
for maneuvering EFAtJMAN.
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Table A1-3o Sigias of the Low Thrust RCS Impule for a

X-POP Stabilized Shuttlc Orbiter for a' 7-Day

ASH Mission

ZFAt 8B

EFAt Ic

ESbtlotr

EFAt|loss

Sub Total

Continsency Factor

59 400 N-sec

2 970 N-sec

15 600 N-sec

91 200 N-sec

642 N-sec

8 450 N-sec

178 262 N-sec

(13

(3

(20

(1

400 lb-see)

669 lb-sec)

520 lb-see)

500 lb-see)

144 lb-ee)

900 lb-seec)

(40 133 lb-aee)

X2

Total FlAtJ 356 524 N-sec (80 266 lb-see)
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A1.4. REACTION CONTROL SYSTEM CONTAMINATION

A1.4.1. Effluents - For an RCS system using high performance
bipropellants (e.g., N2 H4 /N2 04 ), the total weight of propellants

used in a nominal 7-day mission (W ) may be about 200 kg (440 lb).

If we assume that it takes 30 minutes to sweep the resultant cloud
away from the spacecraft, and that it is being continuously re-
plated, there will be an average of 145/(7)(48), or 0.43 kg of
combustion products in the cloud throughout the mission. The
total mass of combustion products in the cloud (M) then is

M=0.43 kg

a. Local Density in the Cloud of Combustion Products -
To determine'local density, assume

1) Spherical symmetry (simpler)

2) A fixed mass exists in the cloud = M
(rate of clearing = rate of addition from thrusters)

3) A radial distribution varying like 1/r4 (typical
of a process of this kind)

4) A minimum spacecraft radius = R 
0
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Based on these assumptions, p(r,O,0) - pcr, and the total integral
of p over all space must equal the cloud's total mass M:

o

p(r)4rr2dr - 4n k$

R
O

d- - 47rk/R
2

r

MR
If p(r)=kr , p(r)= ° ;

47r
where R > R .

-o

Take R as 2 meters, the local density of combustion products
0

at radius r is then

p(r)- (.43)(2) 
4r4r

0.07 kg/m3 ;
4

and the local density at the surface (R).

ps=.00 4 kg/m3 .

b. Total Mass in a
in a cylindrical column,
infinite "tube" or prism
(1 cm by 1 cm)

o
PC

CylindriCal Column - To determine the total mass
the integration of p(r) is performed over the semi-
of a sufficiently small cross-section, for instance

w MR
p(r)dr 4o dr

R mor
o

MR
m _O

4w
1

3r3
M
1 2· 12=R

o

MPC 1 24 2- .003 kg/m2
}pc 12uR

o

c. Total Mass of Combustion Products Per Steradian - To determine the
total mass of combustion products per steradian out to radius r

R

p -4 r s) teradian

- .034 - .069 kg/steradian
r
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and the total mass (to o) in a 1 steradian cone - Mipf.034 kg/

steradian.

d. Exhaust Plume Impingement - References 1 and 2 indicate
that about 2% of a rocket plume will impinge beyond 900

from the nozzle axis over a radius averaging 12 meters. In
7 days, one RCS nozzle may exhaust (assuming six nozzles)
145/6 kg of products. Therefore, the combustion products im-
pinging on surfaces of the vehicle may be about

145 145
M 2 _- 

i 6r 2 6r(12)2

- 0.053 kg/m2

e. Uncombined Propellants - From section A1.3.2, it
appears that about 5% of the propellants will remain uncombined
at 80 milliseconds pulse width. Most of these uncombined pro-
pellants will be expelled into the cloud as a gas or as droplets.
A smaller part of it will be carried much more slowly in the
boundary layer of the nozzle and may merely run back to nearby
surfaces.

The part that is carried in the boundary layer could create
a serious contamination problem if the source were near a critical
surface, as the material is cold and hence a large fraction of it
might be deposited. This is probably not the case with the shuttle
orbiter, as one would expect the RCS nozzles to be located at the
extremities of the orbiter vehicle, and not near any critical
optical surfaces.

f. Constituents of the RCS induced Atmosphere - Based
on references 3 and 4, table A1-4 contains a list of potential pro-
ducts that appear to be typical for high performance propellants.

Most of these constiuents will be in the form of gases at
temperatures near the exhaust temperature of 1200° to 18000 K. Much
of the carbon, however, is likely to be in solid form, made up of
small particles. The uncombined propellants, as previously mentioned,
will be gaseous or droplets. The sodium potassium, and rare earths,
which are potential fuel impurities, would appear mainly as gases.
Nitric acid, a product of incomplete burning of MMH or UDMH, would
appear as a gas. Ablative materials, complex hydrocarbons perhaps
from nozzle liners if used, might appear largely in solid form.
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Table A1-4. RCS Contamination Constituents

CONSTITUENT X BY VOL ESTIMATED STICKING COEFFICIENTS
IN CLOUD

@ LIQUID N
2

TEMPERATURES IN SHADE . IN SUN

H20 7.1 1.0 .1 .01

H2 46.2 0 0 0

N2 24.0 0 0 0

CO 15.1 1.0 .1 .01

0 Co2 1.5 1.0 .1 .01

C 1.1 1.0 .1 .01

UNCOMBINED 5.0 1.0 .1 .01
PROPELLANTS

Na 0.003 0.5 .05 .005

K 0.003 0.5 .05 .005

HNO3 UN3K 1.0 .1 .01

ABLATIE UNK 0.5 .05 .005
MATERIAL

RARE TRACE 0.5 .05 o .5
EARTHS



The sticking coefficients were estimated in order to obtain
a rough idea of the quantities that might accumulate on critical
surfaces, either from the cloud or from direct impingement of the
RCS exhaust. It was not possible for this study to attempt cal-
culation of the accumulation of material on the critical surfaces,
but only to make some comments about potential effects.

A1.4.2. Shuttle Contamination Model - The total contamination

potential may be estimated by consideration of the data presented

in table Al-5. The shuttle contamination model contains basic orbi-
ter contamination sources (taken for the most part from the General
Dynamics RAM reports) plus the estimated effluents expected from a
small (4 lb) RCS stabilization system. The key issue is that por-
tion of the potential contaminants that cannot be programmed for
ejection when astronomy experiments are protected.

Fortunately, most of the potential contaminants will be used,
or can be ejected at a time before or after the observation period.
However, cabin leakage, outgassing, and that part of the RCS ef-
fluents needed to stabilize the orbiter during observation cannot
be programmed. These effluents will be sources of continuous con-
tamination throughout the mission and, except for outgassing, will
be relatively constant.

It is seen that the addition of an RCS stabilization system
would double the amount of unprogrammable contaminants, and would
probably add significant quantities of some new elements to the
induced atmosphere surrounding the spacecraft.

A1.4.3. Potential Effects of RCS Effluents

a. Introduction - The majority of the combustion by-
products resulting from the firing of RCS engines are ejected at
high velocities. These will leave the spacecraft area rapidly,
and produce no interfering effects on the scientific instruments
or subsystems. A portion of the exhaust material, however, leaves
the engines at low velocities, and therefore remains close to the
spacecraft, basically in orbits similar to that of the spacecraft.
Eventually this material is accelerated away from the spacecraft
by atmospheric drag and by radiation pressure, but while it is
close to the spacecraft, scattering and absorption of electromagnetic
energy may be expected.

Absorption by the contamination cloud, whether preferential
(from atomic lines) or spectrally broad (attenuation by deposition
material and/or by molecular bands) is a potential hazard when
either absolute or relative intensity measurements are being made
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Table Al-5. Contamination Model

SOURCE

FUEL CELL DUMP

WASTE

SHUTTLE CABIN LEAKAGE

RESEARCH MODULE LEAKACE

OUTGASSING

MATERIAL

N2 +

N2 +

ORGAN
PART I

H2 0

H2 0

02 + H2 0

02 + H20

IC GASES &
CLES

RATE OF
DeSCHARGE

190

3.3

9.3

10

1

LB/DAY (1)

LB/MAN-DAY( )

LB/DAY (I)

LB/DAY (2)

LB/DAY (3)

PROGRAM
DISCHiARGE

YES

YES

NO

NO

NO

ACPS (+0.5 DEG) H20, CO, ETC 815 LB/DAY(4) NO |

MAN & TRANS RCS H2 0, CO. ETC 21 LB/DAY (4) YES ,

RCS STABILIZATION H
2
0, CO, ETC 20 LB/DAY (4) NO /

NOTES: (I) DATA EXTRACTED FROM RAM TASK 4.2/4.3 REVIEW DATED 10 DEC 1971
(2) DATA BASED ON SORTIE CAN CONCEPTUAL DESIGN, ASR-PD-DO-72-2, MARCH I, 1972
(3) ESTIMATED BASED ON SKYLAB MODEL
(4) BASED ON PROPELLANT REQUIREHENTS

V

kCPS

V

V

I

K.1

,HLO
THRUS?
RC S

V

v'

v

1!

-I



on the source, such as with a photometer, where the band pass may
be wide enough to include an unexpected absorption line due to the
cloud and thereby perturb the instrument intensity calibration.

For high resolution spectroscopy, in addition to degradation
of absolute and relative intensity calibration of the instrument,
the acquisition of data for spectral line profiles could be foiled
by the unexpected influence of nearby or overlapping absorption
lines and bands due to the contaminant cloud, particularly in the
case of a complex profile such as the solar hydrogen Lyman a line
at 121.6 nm and the resonance lines of Mg II (magnesium atoms with
one electron removed, which have a single valence electron con-
figuration like sodium) at X 279.6 and 280.3 nm in the ultraviolet
range. The Lyman a line already has a sharp absorption core due
to atomic hydrogen between the earth and the sun with a column

density of approximately 2x101 2 cm- 2 above 200 km altitudes, and
is useful in determining that quantity. The spacecraft cloud could
influence this measurement if atomic hydrogen was present in high
concentrations.

Scattering effects must be considered if a large number of
particles drifts within the field of view of an observing instru-
ment. The most important source of energy for scattering is the
sun, but earthshine and moonshine cannot be ignored. Noncoherent
(or Mie) scattering could be a severe problem in the presence of
sunlight (reference 5). Even for the worst case model, Rayleigh
(or molecular or coherent) scattering due to interactions of photons
with free molecules, does not appear to be a problem that requires
reckoning (reference 6).

The contamination effects on the scientific instruments con-
sidered here are based on particular models that were assumed for
the chemistry of combustion and for the exhaust ejection and dis-
persal processes. No detailed experimental verifications are
available that lend support or discredit the models. The con-
tamination effects discussed here should be considered as tentative
estimates; supporting tests and detailed analyses will be necessary
to develop better estimates.

The column densities assumed for the various chemical species,
based on the models described above, are listed in table A1-6 and
a summary of potential effects is given in table A1-7. Some of
these contamination effects are discussed in the following para-
graphs.
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Table A1-6. Estimated Column Densities of
Individual Chemical Species in
the Contaminant Cloud

SPECIES COLUMN DENSITY COLUI
-2

cm

tal molecules 8x101 7

r phase 2x101 7

particles (ns4xlO)
-100 Im)

molecular (H 2 ) 5.2x101
8

ic (H) lx101 7

(N2 ) 2.T7x11 8

noxide (CO) 1.7xlO1
8

Dxide (CO2) 1.7xlO
1

7

wnales (DLo.1l m) (nZ2xloll)

L) 2. 4xlOl4

(K) 2.4xlol4

propellants, N20° (1.4x101 7 )

fH:NH2 (4.2x101 7)

Ily in droplet form,
stimate available).

MfN THICKNESS

atiao-cm

.008

.19

.0oo

.10

.06

. oo6

10-5

10-5
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Table A1-7. Potential RCS Contamination Effects

CONSTITUENT POTENTIAL POTENTIAL
CLOUD EFFECTS DEPOSITION EFFECTS

-~~~~~ 

H2 0

H2

N2

CO. CO2

C

No , K

HNO3

UNCOMBINED
PROPELLANTS

ABLATIVE
HATERIALS

STRONG ABSORITION BANDS IN IR &
FOR A< 2000 A; SEVERE SUNLIGHT
SCATTERING If ICE IN CLOUD

ABSORBTION BANDS IN UV

OPAQUE FOR A< 1000 1

STRONG ABSORBTION BANDS IN IR

POSSIBLE SUNLIGHT SCATTERING

SEVERE ABSORBTION AT RESONANCE
LINES

POSSIBLE ABSORBTION BANDS

ABSORBTION BANDS IN IR
SCATTERING OF SUNLIGHT

POSSIBLE StATTERING

SEVERE ABSORBTION ON IR INST;
SEVERE SUNLIGHT SCATTERING IF
ICE DEPOSITED ON SOLAR INST

NONE

NONE

SEVERE ABSORBTION ON IR INST

POSSIBLE SUNLIGHT SCATTERING

COULD BE SEVERE WITH WATER

IF DILUTE, MAY ATTACK OPTICAL
COATINGS

UNKNOWN

POSSIBLE SCATTERING

II I I. i . . . . . I

I

I
Ln



b. Water - In its various forms, water is singled out as
the most critical combustion byproduct, as far as contamination
effects are concerned. It will be encountered mostly in the vapor
and ice crystal phases, and occasionally condensed onto cool
surfaces in the liquid phase.

In the vapor phase, the major effect anticipated is the
absorption at selected wavelengths, which is important in the
infrared and ultraviolet ranges. In the infrared range, for the

17 -2assumed column density of 2x107 cm , attenuation will be observed
at the 2.7, 6.3 and 60 pm bands, reaching depths of attenuation of
between 2 and 20 percent (references 6, 7, 8). Infrared spectroscopy
studies of celestial sources will therefore be partially masked
by this selective absorption. If adequate measurements are made of
the water vapor column density, it may be possible to partially com-
pensate for this masking by subjecting the data to post-mission
processing.

In the ultraviolet range, water vapor exhibits substantial
absorption for wavelengths shorter than 180 nm (references 6, 9).
The anticipated column density will result in absorption ranging
from 4 to 30 percent between 110 and 180 nm, increasing to approxi-
mately 90 percent absorption at 100 nm and shorter wavelengths.

The nucleation of water into the form of ice crystals, or
snow, is also anticipated. These crystals may be of compara-
tively large dimensions, with diameters ranging from 1 to 100
pm (reference 5). The larger particles will remain close to the
spacecraft for extended periods. The primary effect of these ice
particles will be scattering. The column densities of ice
crystals predicted by the assumed model indicate that the
scattered sunlight will be as much as four orders of magnitude
brighter than the radiance of the night sky away from the
galactic equator (reference 5). This may preclude observations
of faint stellar sources during the sunlit portion of the orbit,
and of the outer solar corona, if RCS is used for attitude control.

Deposition and condensation of water vapor on the optical
surfaces within the instruments may also occur. A preliminary
analysis suggests that this problem will be most pronounced with
the cryogenically-cooled infrared telescope. Broadband absorption
and scattering are anticipated from this type of condensate.

c. Hydrogen and Nitrogen - The most abundant species in
the RCS exhaust is hydrogen. It is expected to be present mainly
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in the molecular form, H2, but may also appear in appreciable

proportions as atomic hydrogen (due to the ineffectiveness of
the radiative association mechanism for formation of molecular
hydrogen (reference 10).

Molecular hydrogen in its ground state has no permanent
dipole moment, and therefore shows only weak absorption in the
infrared range (reference 11). Significant absorption is observed
when the molecule is excited to electronic states, i.e., the
Lyman and Werner progressions or bands, which start at 110.8 and
100.9 nm respectively (references 9, 10). In this range, absorption
due to the anticipated column density will be as high as 85 percent
(reference 2).

The excited levels of the hydrogen molecule have long life-
times (reference 10). For these excited states, the dipole moment
is not zero, which will result in absorption lines in the in-
frared range. The proportion of molecules in the excited states
that should be expected is not known, and should be investigated
carefully if RCS attitude control techniques are selected.

The atomic hydrogen component is a different problem. A
small proportion of the hydrogen in the monoatomic form, say one
percent of the anticipated hydrogen in the cloud, will result in
an optical depth of 0.6 (45 percent absorption) at several of
the wavelengths of the Lyman series. This will contribute to the
far ultraviolet absorption due to the molecular bands, which was
described above.

The condensation of hydrogen onto critical optical surfaces
is not anticipated, even on cryogenically-cooled surfaces, due
to its very low boiling temperature, 20.3 K.

Molecular nitrogen is not as abundant in the RCS exhaust as
is hydrogen. It should be present mainly in the gaseous molecular
form, N2. The most prominent effect of the nitrogen "atmosphere"
around the spacecraft will be observed in the far ultraviolet,
beyond the line limit for atomic hydrogen at 91 nm. In this range,
the absorption produced by the anticipated N2 concentration could

be as high as 99 percent (reference 6).

The gaseous nitrogen is not expected to condense onto critical
optical surfaces, due to its low boiling temperature of 77 K. The
single possible exception is the cryogenically-cooled infrared tele-
scope, for which surface temperatures could be 27 K or lower.
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d. Carbon Monoxide and Carbon Dioxide - These two stable

oxides of carbon will appear in the RCS exhaust. The carbon
monoxide (CO) concentration in the exhaust is expected to be

approximately ten times higher than the carbon dioxide (CO2) level,
apparently due to an oxygen-poor combustion mixture.

Both of the carbon oxides show strong absorption in the

ultraviolet range (references 9,13). The absorption spectrum

of CO shows peaks at several discrete wavelengths within each

band, reaching maximum values of nearly 10 percent. The anticipated
column density would be opaque in the 20 to 70 nm extreme ultra-
violet range. The absorption spectrum of CO2 is generally smoother

than part of CO. The anticipated concentration should result in
moderate absorption (7-40 percent) at all wavelengths shorter than

160 nm, except at the 112 and 114 nm absorption peaks, for which
it could be virtually opaque.

In the infrared range, CO will not cause any noticeable
absorption problems. Carbon dioxide shows strong absorption
peaks at 2.8, 4.3, and 15 pm, which will reach values of 35

percent absorption for the anticipated column density.

Condensation of the carbon oxides on critical optical surfaces

is not possible except on the cryogenically-cooled infrared
telescope.

e. Sodium and Potassium - The fuel used in the RCS engines
may include sodium and potassium in "trace" concentrations,
approximately 100 parts per million.

The effect of absorption at the sodium and potassium resonance
wavelengths is virtually complete (total absorption) in a continuum
if the supposed concentrations are correct. The supposed cloud
concentration of sodium would hinder meaningful observations of

the solar sodium D-lines, as well as observations of the sodium
airglow emission layer, if Doppler line shifts are neglected. The
Doppler shift (AX/X=v/c) for a relative velocity equal to the orbital

velocity (17.5x105 cm/sec) is about 0.15 A. The full-width half-

maximum of the NaX5890 A line is about 0.03 A at 12000 K, and, so,
one would assume that the shift is sufficient to prevent attenua-
tion of the emission line of a source such as the airglow layer,
but that the removal of radiation from a continuum would still
occur at the shifted wavelength. However, for this relative mo-
tion with respect to the sun, the shifted absorption line would
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still fall well within the Fraunhofer D2 line (FWHMliA). There

could also be the situation where the relative velocity of the
cloud and the source is small, causing serious absorption to
occur at line center.

It is realized that the potential targets of Astronomy
Sortie Missions include sources other than the sun or the earth's
airglow. The problems that could be caused by absorption in the
spacecraft cloud apply to those sources as well as the sun and
the airglow. The spectral characteristics of the source being
investigated should be considered, with respect to each experiment
objective, for cloud perturbations of that spectrum.

Because of the sharpness of the spacecraft cloud absorption
lines, the possibility of the use of certain strong absorption
lines (such as the Na D-lines) as a wavelength calibration when
viewing a source having emission (either line or continuum) in
the region of the cloud line might be considered.

f. Droplets and Granules - Some of the material emitted
with the RCS exhaust is expected to be in droplet or granule
form. The free carbon resulting from incomplete propellant com-
bustion has a tendancy to cluster or aggregate into granules.
The interior surfaces of the RCS thruster nozzles will show a
tendency to ablate, releasing small particles of solid material
(mostly ceramics), and the fraction of the liquid propellants
that does not burn at all at thruster startup and shutoff will
come out of the nozzle mostly in droplet form.

These nongaseous forms will produce scattering of sunlight
and scattering from other bright sources. Adhesion onto critical
surfaces may also take place. We do not have enough detailed data
concerning the RCS combustion process in small thrusters to allow
a meaningful estimate of the importance of these residues as con-
taminants.

Since RCS thrusters may continue to be candidate devices for
attitude control, it will be necessary to analyze and evaluate these
possible effects to determine if and/or how they interfere with
the Astronomy Sortie Missions scientific observations.
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ALo5. OTHER CONSIDERATIONS FOR RCS SYSTEMS

A1.5.1. Temperature Range - A propellant for use in a
reaction control system must possess a high degree of thermal
stability.

This is required to resist heat soak-back from the com-
bustion chamber which can be especially acute due to the in-
terrupted flow demand required in this type of application.
During periods of no flow, inlet plumbing can become sufficiently
hot to allow the propellants to be heated to relatively high
temperatures. Care must be taken to insure that the propellant
temperatures do not exceed the safe level. Vapor phase decom-
position of hydrazine in particular may be hazardous.

A1.5.2. Hazards - Most high performance propellants are
toxic. Pure hydrazine forms detonatable vapors, which are high
pressure gases that may also rupture bladders. In the Apollo 15
flight, 6 pounds of hydrazine were dumped through a hot nozzle
and caused a fire that burned parachute shrouds.

A1.5.3. Materials Compatibility - Nitrogen tetroxide,
especially, is rather incompatible with most elastomers;
although recent bladder design has to a large degree circumvented
this problem.

A1.5.4. Handling and Maintainability - Most of the above
considerations suggest a handling and maintenance problem. This
is little different than that already existing for the ACPS, but
will add some to the magnitude and complexity.

A1.5.5. Reliability - Generally, hot gas bipropellant
systems will be less reliable than monopropellant or cold gas
systems. Hot gas control valves tend to be less reliable than
cold gas valves, accumulators are required to stabilize the
system, and of course, the bipropellant system has about twice
as many components.

A1.5.6. Hardware Interfaces - All reaction control systems
will have direct interfaces with the orbital vehicle, which will
affect the orbiter design and development. These will be mainly
electrical and structural; although the inclusion of any stability
augmentation system will create some operational interfaces. An
RCS system mounted externally on the orbiter will require
inclusion of devices in the orbiter design for ejection of the
RCS pods prior to reentry.
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the program operational phases. 7
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ABBREVIATIONS AND ACRONYMS

ABBREVIATION
ITEM OR ACRONYM

Cargo Lift Trailer (Used with Guppy)

Environmental Cover and Control Unit
(Covers and Protects SL and Pallet)

Guppy Payload Pallet (Supports payload in Guppy)

Payload Carrier Processing Facility
(Orbiter and payload processing area at Launch or
Landing Site)

Payload Environmental Supply Unit
(Provides atmosphere to payload in orbiter cargo bay)

Payload Integration Center - MSFC

Payload Processing Facility (Receiving, assembly and
inspection building at Launch or Landing Site)

Payload Processing Facility - MSFC
(Multi room building housing cleanrooms)

Payload Transfer Dolly

Payload Transportation Fixture

Principal Investigator

Product Integrity Engineer

Shuttle Maintenance and Checkout Facility
(Launch Site cleanroom with airlock for maintaining
the Shuttle orbiter)

Sortie Lab

Space Astronomy Control Facility

CL Trailer

ECCU

PCPF-LS

PESU

PIC-MSFC

PPF-LS

PPF-MSFC

PT Dolly

PT Fixture

PI

PIE

MCF -LS

SL

SACF
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PIC-MSFC TRANSIENT CREW

ara Payload Integration Center - MSFC transient crew includes the following

personnel:

1 Product Integrity Engineer (PIE)

2 Quality control engineers

1 ECCU Specialist

2 SL Pallet Engineers

2 SL PalICt TechrniciaIls

3 Scientists

3V Experiment Technicians

PIC-MSFC TRANSIENT GUPPY SUPPORT CREW 

The PIC-MSFC crew to support the payload during loading in the Super Guppy

aircraft, flight, and offloading includes the following personnel:

1 PIC

1 QC Engineer

1 ECCU Specialist
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PHASE I - Pack, Ship, Deliver to Launch Site

Scope:

Pack refurbished and serviced payload at the PIC (MSFC), transfer to

the Shuttle Launch Site, and deliver to the Launch Site payload processing

facility.

Duration:

42 hours

Facilities:

Payload Processing Facility - MSFC

Airlock

Payload Assembly Area

MSFC Airport

Launch Site Airport

Payload Processing Facility - Launch Site

Airlock

Clean Area

Manpower:

14 PIC (MSFC) Transient Crew

3 PIC (MSFC) Transient Guppy Support Crew

2 Crane Operators

6 Handling Crew

2 PPF-MSFC Facility Crew

2 PPF-LS Facility Crew

2 Tractor Operator (PT Dolly)

2 Escort Vehicle drivers

1 State Patrolman

1 Tractor Operator (CL Trailer)

1 Guppy Cargomaster

3 Guppy Crew

2 General Mechanics
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2irport Equipment:

1 PT Fixture

I ECCU

1 PT Dolly

1 Tractor (PT Dolly)

1 Payload Lifting Sling Set

1 Lo-Boy and Tractor, With Tiedowns

2 Escort Vehicles

1 State Patrol Escort Car

2 13-Ton Portable Cranes

1 CL Trailer

1 Tractor (CL Trailer)

1 Super Guppy Aircraft

2 Ladders

1 Cleaning Supplies Set

4 Work Stands
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EVws SEQUENCY AND RESOURCE REQUmES

F3hSE I

FUNCTION

A. Install ECCU, purge and stabilize,
using facility supplies

B. Place payload on PT Dolly, move
into airlock and activate ECCU

C. Lift payload from PT Dolly,
place on Lo-Boy and tie down

D. Transport payload to Super Guppy
aircraft at MSPC airport

g. Place Guppy Payload Pallet
on CL Trailer; lift payload
from Lo-Boy and place on
Pallet

P. Load payload into Super Guppy
aircraft and eecure, and coanct
payload to Gupp apport

G. Ply payload from lFC airport to
launch site airport

B. Prepare to unload payload (includes
visual chck, review of ECCU
recorded data and disconnect of
payload from Gpy support)

DURATION FACILITIES

8 hours Payload assembly area of
PPF-MSFC

2 hours Payload assembly area of
PPF-MSFC and airlock of

3 hours Airlock of PPF-MSPC

4 hours None

3 hours MSPC airport

3 hours IEFC airport

4 hours Non

3 hours LS airport

MANPOWER

NO. SKILL

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 PPF-MSFC facility crev

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 Tractor operator (PT Dolly)
2 PPF-MSFC facility crew

14 PIC-HSFC transient crew
2 Crane operators
6 Handling crew
2 Tractor operator (Lo-Boy)
2 Tractor operator (PT Dolly)
2 PPP-MSFC facility crew

2 Tractor operator (Lo-Boy)
3 PIC-MSPC transient Guppy Support

crew
6 handling crew
2 Escort vehicle drivers
1 State patrolan

I Guppy Cargomaster
2 Tractor operator (Lo-Boy)
3 PIC-SFPC transient Guppy Support

crew
2 Crane operators
6 Handling crew
1 Tractor operator (CL Trailer)
2 General mechanics

1 Guppy Cargoasater
6 Handling crew
1 Tractor operator (CL Trailer)
2 General mehanics

3 PIC-IPC transient Guppy Support
crew

3 Guppy Crew

3 FIC-!WC transient Guppy Support
crew

I Gupp Carsom atar
2 General _ehenics

SUPPORT EQUIPMENT

NO. DESCRIPTION

I PT Fixture
1 ECCU

1 PT Fixture
1 ECCU
1 PT Dolly
1 Tractor (PT Dolly)
1 Payload lifting sling set

1 PT Fixture
1 PT Dolly
1 ECCU
1 25 ton Lo-Boy and tractor, with tiedoens
1 Tractor (PT Dolly)
1 Payload lifting sling set

1 25 ton Lo-Boy and tractor, with tiedoens
2 Escort vehicles
1 State patrol escort car
1 PT Fixture
1 ECCU'

1 25 ton Lo-Boy and tractor, with tiedomna
1 PT Fixture
1 ECCU
2 13 ton portable crane
1 CL Trailer
1 Tractor (CL Trailer)
1 Super Guppy aircraft
1 Payload lifting sling set

1 PT Fixture
1 ECCU
1 CL Trailer
1 Tractor (CL Trailer)
1 Super Guppy aircraft

I PT Fixture
1 ECCU
1 Super Guppy aircraft

1 PT Fixture
1 ECCU
2 Ladders
1 Super Guppy aircraft



EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE I (continued)

FUNCTION

I. Unload payload from Super
Guppy onto CL Trailer and
activate ECCU

J. Transfer payload to Lo-Boy and
return Guppy Payload Pallet to
aircraft

. Transfer payload on Lo-Boy into
PPF-LS airlock, connect ECCU to
facilities support

L. Transfer payload from Lo-Boy to
PT Dolly, wipe down all exposed
surfaces, and move into clean
area of PPF-LS

FACILITIES

2 hours Launch Site airport

2 hours Launch Site airport

4 hours Airlock of PPF-LS

4 hours Airlock and clean area
of PPF-LS

MANPOWER

NO. SKILL

1 Guppy Cargomaster
6 Handling crew
1 Tractor operator (CL Trailer)
3 PIC-MSFC transient Guppy Support

crew
2 General mechanics

I Guppy Cargomaster
6 Handling crew
3 PIC-MESFC transient Guppy Support

crew
2 Crane operators
I Tractor operator (CL Trailer)
2 Tractor operators (Lo-Boy)
2 General mechanics

2 Tractor operators (Lo-Boy)
6 Handling crew
2 Escort vehicle drivers

14 PIC-MEFC transient crew
2 Facility crew

2 Crane Operators
6 Handling crew
2 Tractor operators

14 PIC-MSFC transient crew
2 Facility crew
2 Tractor operator (PT Dolly)

SUPPORT EQUIPMENT

NO. DESCRIPTION

i PT Fixture
i ECCU
I CL Trailer
I Tractor (CL Trailer)
1 Super Guppy aircraft

1 PT Fixture
1 ECCU
I CL Trailer
I Tractor (CL Trailer)
I Super Guppy aircraft

13 ton portable cranes
1 25 ton Lo-Boy and tractor, with tiedowns
1 Payload lifting sling set

PT Fixture
1 ECCU
1 25 ton Lo-Boy and tractor, with tiedowns
2 Escort vehicles

PT Fixture
ECCU
25 ton Lo-Boy and tractor, with tiedowns
PT Dolly
Tractor (PT Dolly)
Work stands
Cleaning supplies set-
Payload lifting sling set

I
1
!
1

I



PHASE II - Receipt-to-Launch at Launch Site

Scope:

Perform receiving inspection of payload at the Launch Site payload

processing facility, verifying environments encountered, status of operating

systems, and installing (and verifying) items that were not integrated at

the PIC (MSFC). The flight-ready payload is installed in the orbiter,

installation is verified, and monitored during orbiter prelaunch operations.

Final servicing is performed on-pad during the pre-countdown period. The

last operation is launch.

Duration:

190 hours

Facilities:

Payload Processing Facility - Launch Site

Airlock

Clean Area

Payload Carrier Processing Facility - Launch Site

Airlock

Clean area

Shuttle Launch Pad

Manpower:

14 PIC-MSFC Transient Crew

2 PPF-LS Facility Crew

2 Crane Operators

6 Handling Crew

2 PI

2 Cryogenics servicemen
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a-~.,o yir: (Continued)

2 Tractor Operators (PT Dolly)

2 Escort Vehicle Drivers

2 PCPF-LS Facility Crew

6 Payload Installation Technicians

4 Orbiter Electrical Technicians

4 Orbiter Mechanical Technicians

1 PESU Specialist

1 PT Fixture

1 PT Dolly

6 Work Stands and Platform

1 ECCU

1 ECCU Lifting Sling Set

1 Cryogenics Servicing Unit

1 Battery Handling Equipment

1 Checkout Console

1 Tractor (PT Dolly)

2 Escort Vehicles

1 Cleaning Supplies

1 Payload Lifting Slings

1 PESU
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ZVMIS SEPUEBCE AND RESOURCE REQUIREMENTS

YHASE II

FUNCTION DURATION

A. Review end interpretation of 4 hours
ECCIU recorded data

B. Stabilize PPF-LS as 8 hours
100,000 clean room (Starts at

beginning)
of A

C. Iles ECC; perform 16 hours
% receiving ionpectien

D. Service Gama-Ray detector 4 hours
Cryogenic cooling unit (on ECCU)

E. Install and secure eCCU and 2 hours
connect to facilities support

F. Install flight batteries in SL 4 hours

C. Verify flight battery installation, 3 hours
verify readiness to ate payload
vith orbiter

H. Move payload on PT Dolly into 5 hours
PPF-IS airlock, discomect ECCU
facilities support, move to PCPF-IS
airlock, connect ECCU to facilities
support, wipe dan all exposed surfaces,
and move into clean area

FACILITIES

Clean area of PPF-LS

Clean area of PPF-IS

Clean area of PPF-IS

Clean area of PPF-LS

Clean area of PPF-IS

Clean area of PPF-LS

Clean area of PPF-IS

Airlock and clean area of
PPF-IS, and airlock and
clean area of PCPF-LS

MANPOER

NO. SKILL

14 PIC-MSFC transient crew
2 PPF-LS Facility crew

14 PIC-MSFC transient crew
2 PPF-IS Facility crew

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 PPF-IS Facility crew
1 PI

14 FIC-MSFC transient crew
2 Cryogenics servicemen

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew

14 PIC-MSFC transient crew

14 PIC-MSFC transient crew

14 PIC-MSFC transient crew
2 Tractor operator (PT Dolly)
2 Escort vehicle drivers
6 Handling crew
2 PPF-IS Facility crew
2 PCPF-IS Facility crew

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 PT Fixture
1 PT Dolly
1 Work stand
1 ECCU

1 PT Fixture
1 PT Dolly
1 ECCU

1 PT Fixture
1 PT Dolly
1 ECCU
6 Work stands and platform
1 ECCU lifting sling set

1 PT Fixture
1 PT Dolly
1 ECCU
1 Cryoganics Servicing Unit

1 PT Fixture
I PT Dolly
1 ECCU
I ECCU lifting sling set

1 PT Fixture
1 PT Dolly
1 ECCU
1 Battery handling equipment

1 PT Fixture
1 PT Dolly
1 ECCU
I Checkout console

1 PT Fixture
1 PT Dolly
1 ECCU
1 Tractor (PT Dolly)
2 Escort vehicles
4 Work stands
1 Cleaning supplies
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EVENTS SEQUENCE AND RESOURCE REQUIRENENTS

PHASE II (continued)

FUNCTION

I. Stabilize PCPF-IS as
100,000 clean room

J. Remove ECCU, attach crane
to payload, release payload
from PT Fixture

K. Install Payload in Orbiter -
Structural mate and secure;
Connect electrical and mechanical

service lines to orbiter;
Connect access tunnel to orbiter;
Connect controls and displays in

orbiter;
Connect electrical and mechanical

umbilicals; and
Connect PESU

L. Verify payload to orbiter interfaces -
Hazard warning
Data management and voice
Control and Display
Ground power
Tunnel leak check
Fluid oystems leak check

N. Close orbiter payload bay doors,
begin purge of bay, orbiter
preparation, mate to booster,
transfer to launch pad, mate to
pad, preliminary checks

K. Service Payload -
high pressure gas systems
Cryogenics systems
Fuel cell service and activation
Verify cryogenics refrigeration

operation

0. Orbiter cabin closeout, countdown
preparation, countdown

DURATION FACILITIES

8 hours Clean area of PCPF-LS

5 hours Clean area of PCPF-LS

6 hours Clean area of PCPF-LS

6 hours Clean area of PCPF-LS

95 hours Airlock and clean area of
PCPF-LS and Shuttle launch
pad

4 hours Shuttle launch pad

24 hours Shuttle launch pad

MANPOWER

NO. SKILL

14 PIC-IMFC transient crew
2 Facility crew

14 PIC-HSFC transient crew
2 Crane operators
6 Handling crew

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
6 Payload installation technicians
4 Orbiter electrical technicians
1 PESU specialist
4 Orbiter mechanical technicians

14
2
6
6
4
4
1

14
4
4
1
2

14
4
4
1
2

PIC-MSFC transient crew
Crane operators
Handling crew
Payload installation technicians
Orbiter electrical technicians
Orbiter sechanical technicians
PESU specialist

PIC-MSFC transient crew
Orbiter electrical technicians
Orbiter mechanical technicians
PESU specialist
PI

PIC-NSFC transient crew
Orbiter electrical technicians
Orbiter mechanical technicians
PESU specialist
PI

14 PIC-MPFC transient crew
4 Orbiter electrical technicians
4 Orbiter mechanical technicians
1 PESU specialist
2 PI

SUPPORT EQUIFPENT

NO. DESCRIPTION

1 PT Fixture
1 PT Dolly
1 ECCU

1 PT Fixture
1 PT Dolly
1 ECCU
4 Work stands
1 ECCU lifting sling set
1 Payload lifting sling set

1 Payload lifting slings
4 Work stands
1 PESU

I Checkout console
1 PESU

1 PESU

I PESU

1 PESU

P. launch

12



iPiASE III - Ascent and orbital flight

Scone:

Begins with liftoff and includes all flight operations through

preparation for deorbit.

Duration:

168 hours

Facilities:

Space Astronomy Control Facility

Offices

Observatory

Shuttle Mission Control (Payload Monitor Only)

Landing Site (Mission Monitor)

Manpower:

Portion of Space Astronomy Control Facility personnel, scheduled in

2 twelve hour shifts to provide continuous coverage of mission.

1 Telescope PI

1 Wide Coverage X-Ray Array PI

1 Array PI

9 Experiment specialists

14 PIC-MSFC Transient Crew

Support Equipment:

Telephone voice and facsimile link between SACF and Shuttle Mission

Control

13.
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EVENTS SEQUENCE AND RESOURCE REQU]

PHASE III

FUNCTION

A. Boost, insert, transfer,
attitude stabilization

B. SL checkout and crew ingress

C. Payload inspection, deploy-
ment and checkout

D. Experimentation

E. Payload shutdown and
retract

FP. Secure SL and Pallet

C. Checkout Orbiter

IREMENTS

DURATION

SOLAR SIII IR

2:30 2:30 2:30

1:00 1;14 ].:00

3:51 2:14 (:30

154:29 155:27 151:35

2:47

:32

1:00

3:14 2:50

:32 :32

1:00 1:00

FAC ILITIES

Shuttle Mission Control
(Payload Monitor Only)
LS Monitor

Shuttle Mission Control
(Payload Monitor Only)
LS Monitor

Shuttle Mission Control
Space Astronomy Control
Facility
LS Monitor

Shuttle Mission Control
Space Astronomy Control
Facility
LS Monitor

Shuttle Mission Control
Space Astronomy Control
Facility

Shuttle Mission Control
Landing Site

MANPOWER

1 Telescope PI
1 Wide coverage X-Ray array PI
1 Array PI
9 Equipment specialists

2 Twelve hour shift support by
9 Experiment specialists and
3 PIs

2 Twelve hour shift support by
9 Experiment specialists and
3 PIs

2 Twelve hour shift support by
9 Experiment specialists and
3 PIs

SUPPORT EQUIPNENT

Telephope voice and facsimile link between
SACP and Shuttle Mission Control

Telephone voice and facsimile link between
SACP and Shuttle Mission Control

Telephone voice and facsimile link between
SACF and Shuttle Mission Control

Telephone voice and facsimile link between
SAC? and Shuttle Mission Control

14
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PHASE IV - Deorbit, safe, and remove payload, inspect and service payload

Scope:

Begins after the payload is secured and the orbiter is checked out

with initiation of deorbit. Includes descent flight, landing of the orbiter,

and safing and inspecting of the orbiter at the landing site. Transfer from

the landing site to the payload carrier processing facility and processing

through the airlock into the clean area is performed with the payload in the

orbiter.

In the cleanroom, the orbiter cargo bay doors are opened, the payload

is removed and placed on the PT Fixture which is located on the PT Dolly,

and the ECCU is installed. The payload is then transferred to the landing

site payload processing facility for inspection, data tape and film removal,

and battery removal.

Duration:

42 hours

Facilities:

Shuttle Mission Control (Payload Monitor Only)

Landing Site

Payload Carrier Processing Facility-Landing Site

Airlock

Clean area

Payload Processing Facility-Landing Site

Airlock

Clean Area

15



Li PIC-MSFC Transient Crew

2 PCPF-LS Facility Crew

2 Crane Operators

6 Handling Crew

- Orbiter Ground Crew

2 Tractor Operator (PT Dolly)

2 Escort Vehicle Drivers

2 PPF-LS Facility Crew

Support Equipment:

1 PESU

1 PT Fixture

1 PT Dolly

1 ECCU

1 ECCU Lifting Sling Set

4 Work Stands

1 Tractor (PT Dolly)

2 Escort Vehicles

1 Cleaning Supplies

1 Guide Rail Set (for payload removal)

1 Battery Handling Equipment

16



, StMuEC AND RESOURCE REQUIREMNTS

IV

FlUlTIOU FACILITIES MANPOWER

NO. SKILL

SUPPORT EQUIPMENT

NO. DESCRIPTION

A. Initiate deorbit, descend,
and land orbiter

B. Safe, inspect, service, connect
PESU, and transfer orbiter to
PCPF-LS, process orbiter through
airlock and ewe into clean area

C. Service EaCU

D. Disconnect payload froa orbiter
and switch to facility supplies,
open and secure payload bay doors

E. Visual inspection of payload

. Remove pyload from orbiter bay
and place on PT Fixture located
on PT Dolly

G. Inotall and secure EgC

H. 2Ne payload or PT Dolly into
PCIF-JL arlock, e to PF - IS
airlock, wipe d a ell *eoed
surfaces, and wo into clean
e of N-o1

I. RBemoe EC, r e payload film and
tape, re flight batteries, inspect
SREI, pallet, and experiments

1 hour Shuttle Mission Control
Landing Site

13 hours Landing Site Airlock of
PCPF-IS and clean area
of PCPF-LS

3 hours
(Simultan-
eous with
B)

2 hours

1 hour

Airlock of PCPF-LS

Clean area of PCPF-LS

Clean area of PCPF-LS

2 hours Clean area of PCPF-LS

2 hours Clean area of PCPF-LS

5 hours Clean area of PC1-LS
Airlock of PCl-LS
Airlock of PF-LS
Clean area of NV-IS

16 hours Clean area of PPF-LS

- Orbiter ground crew
- Facility crew

14 PIC-NSFC transient crew

14 PIC-HSFC transient crew
2 Facility crew
2 Crane operators
6 Handling crew

14 PIC-NSFC transient crew
2 Facility crew
- Orbiter ground crev

14 PIC-NSFC transient crew
- Orbiter ground crew

14 PIC-NsFC transient crew
2 Facility crew
- Orbiter ground crew
6 Handling crew
2 Crane operators
2 Tractor operators (PT Dolly)

14 PIC-InFC transient crew
2 Facility crew
6 Handling crew
2 Crmne operators
2 Tractor operators (PT Dolly)

14 PIC-MSFC transient crew
2 Tractor operator (PT Dolly)
2 Escort vehicle drivers
2 PCPr-LS Facility crew
2 Phl-LS Facility crew
6 Handling crew

14 PIC-!TFC transient crew
2 Tractor operator (PT Dolly)
2 PPF-IS Facility crew
6 Handling crew
2 PI

I PESU

1 ECCU
1 PT Fixture
1 PT Dolly
1 ECCU lifting sling set

4 Work stands

4 Work stands

1 PT Fixture
1 PT Dolly
1 Tractor (PT Dolly)
4 Work stands
1 Guide rail set (for payload rewoval)

1 PT Fixture
1 PT Dolly
1 Tractor (PT Dolly)
1 ECCU
1 ECCU lifting sling met

1 PT Fixture
1 PT Dolly
1 ECCU
1 Tractor (PT Dolly)
2 Escort vehicles
4 Work stande
1 Cleaning supplies

1 PT Fixture
1 PT Dolly
1 ECCU
1 Tractor (PT Dolly)
4 Work stands
1 ECCU lifting sling set
1 Battery handling equipment

17
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?H.: "7 -V Pack, ship, deliver to PIC (MSFC)

cr oe:

Pack returned payload at the PPF-LS, transfer to MSFC, and deliver

to the MSFC payload processing facility.

Duration:

34 hours

Facilities:

Payload Processing Facility-Landing Site

Airlock

Clean area

Landing Site Airport,

MSFC Airport

Payload Processing Facility - MSFC

Airlock

Assembly Bay

Manpower:

14 PIC-MSFC Transient Crew

3 PIC-MSFC Transient Guppy Support Crew

2 Crane Operators

6 Handling Crew

2 PPF-MSFC Facility Crew

2 PPF-LS Facility Crew

2 Tractor Operator (PT Dolly)

2 Tractor Operator (Lo-Boy)

2 Escort Vehicle Drivers

1 State Patrolman

.Tractor Operator (CL Trailer)

18



anpower: (continued)

1 Guppy Cargomaster

3 Guppy Crew

2 General Mechanics

Support Equipment:

1 PT Fixture

1 ECCU

1 PT Dolly

1 Tractor (PT Dolly)

1 Payload lifting sling set

1 Lo-Boy and tractor, with tiedowns

2 Escort vehicles

1 State Patrol Escort

2 13-Ton Portable Cranes

1 CL Trailer

1 Tractor (CL Trailer)

1 Super Guppy aircraft

2 Ladders

1 Cleaning Supplies Set

4 Work Stands
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EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE V

FUNCTION

A. Service ECCU

B. Install and secure ECCU

C. Move payload into airlock
activate ECCU, and load
onto Lo-Boy

D. Transport payload to Super
Guppy aircraft at airport

E. Place Guppy Payload Pallet on
CL Trailer, place payload on
pallet and secure

FP. Load payload into Super Guppy
and secure, attach ECCU to
Guppy services

G. Fly payload from Landing Site
to PIC-MSYC

DURATION

3 hours
(simultan-
eous opera-
tion - com-
plete at
start of B)

2 hours

FACILITIES

Airlock of PPF-LS

Clean area of PPF-LS

3 hours Airlock of PPF-LS

4 hours Landing Site airport

3 hours Landing Site airport

3 hours Landing Site airport

4 hours Landing Site airport
MSFC airport

MANPOWER

NO. SKILL

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 Tractor Operators (PT Dolly)
2 Facility crew

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 Tractor operators (PT Dolly)

14 PIC-MSFC transient crew
2 Crane operators
6 Handling crew
2 Tractor operators (PT Dolly)
2 Facility crew
2 Tractor crew (Lo-Boy)

3 PIC-MSFC transient Guppy Support
crew

2 Tractor crew (Lo-Boy)
2 Escort vehicle drivers

3 PIC-MSFC transient Guppy Support
crew

2 Tractor crew (Lo-Boy)
6 Handling crew
1 Tractor operator (CL Trailer)
I Guppy Cargomaster
2 Crane operators

3 PIC-IMFC transient Guppy Support
crew

6 Handling crew
I Tractor operator (CL Trailer)
1 Guppy Cargomaster

3 PIC-MSFC transient Guppy Support
crew

3 Guppy crew

SUPPORT EQUIPMENT

NO. DESCRIPTION

I PT Dolly
I Tractor (PT Dolly)
1 ECCU

1 ECCU lifting sling set
I PT Fixture
1 PT Dolly
I ECCU
4 Work stands
1 Tractor (PT Dolly)

1 PT Fixture
1 PT Dolly
1 Tractor (PT Dolly)
I ECCU
1 25 ton Lo-Boy and tractor, with tiedowns
1 Payload lifting sling set

1 PT Fixture
1 ECCU
1 25 ton Lo-Boy and tractor, with tiedownms
2 Escort vehicles

I PT Fixture
1 ECCU
1 25 ton Lo-Boy and tractor, with tiedowns
2 13 ton portable cranes
1 Payload lifting sling set
1 CL Trailer
1 Tractor (CL Trailer)
1 Super Guppy aircraft

1 PT Fixture
1 ECCU
1 CL Trailer
1 Tractor (CL Trailer)
1 Super Guppy aircraft

1 PT Fixture
1 ECCU
1 Super Guppy aircraft
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EVENTS SEQUENCE AND RESOURCE REQUIRENENTS

PRASE V (continued)

FUNCTION

H. Prep. to unload payload
(visual check, review of ECCU
recorded data, and disconnect
ECCU from Guppy services)

I. Unload payload from Super Guppy
onto CL Trailer and activate ECCU

J. Transfer payload to Lo-S-y, and
return Guppy Payload Pallet to
aircraft

K. Transfer payload, on Lo-Boy
into PF-ISFC airlock, connect
ECCU to facilities support

L. Transfer payload from Lo-Boy to
PT Dolly, wipe down all exposed
surfaces, move into clean area of
PPF-MSFC, and place payload on
floor pads

DURATION FACILITIES

3 hours MSFC airport

2 hours MSFC airport

2 hours HSFC airport

4 hours Airlock of PPF-MSFC

4 hours Airlock of PPF-MSFC and
Assembly Bay of PPF-ISFC

MANPOWER

NO. SKILL

3 PIC-MSFC transient Guppy Support
crew

I Guppy Cargomaster
2 General mechanics

3 PIC-MSFC transient Guppy Support
crew

1 Guppy Cargomaster
6 Handling crew
1 Tractor operator (CL Trailer)

1 Guppy Cargomaster
6 Handling crew
3 PIC-MSFC transient Guppy Support

crew
2 Crane operators
1 Tractor operator (CL Trailer)
2 Tractor operators (Lo-Boy)

2 Tractor operator (Lo-Boy)
3 PIC-MSFC transient Guppy Support

crew
2 Escort vehicle drivers
2 Facility crew
1 State patrolman

2 Crane operators
6 Handling crew
2 Tractor operators (Lo-Boy)

14 PIC-MSFC transient crew
2 Facility crew

Tractor operators (PT Dolly)

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 PT Fixture
1 ECCU
1 Super Guppy aircraft
2 Ladders

1 PT Fixture
I ECCU
1 Super Guppy aircraft
1 CL Trailer
1 Tractor (CL Trailer)

1 PT Fixture
1 ECCU
1 Super Guppy aircraft
1 CL Trailer
1 Tractor (CL Trailer)
1 25 ton Lo-Boy and tractor, with tiedowns
2 13 ton portable cranes
1 Payload lifting sling set

1 PT Fixture
1 ECCU
1 25 ton Lo-Boy
2 Escort vehicles
I State Patrol escort car

I PT Fixture
1 ECCU
1 25 ton Lo-Boy and tractor, with tiedowns
1 PT Dolly
1 Tractor (PT Dolly)
4 Work stands
1 Cleaning supplies set
I Payload lifting sling set
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'- ea VI Refurbish, integrate, and service payload at the Payload

Integration Center (MSFC)

Scope:

With the payload on the payload transportation fixture protected by

the ECCU and located in the assembly bay of the Payload Processing

Facility at MSFC, the assembly bay is stabilized as a class 100,000 clean-

room. The ECCU is removed and the telescopes and arrays are removed and

taken to individual refurbishment rooms. Subsystem components of the SL

and Pallet are removed, serviced, modified and replaced.

When the SL and Pallet are ready to receive new telescopes and arrays,

the flight units are installed and verified. Finally, the integrated pay-

load is exercised in a combined systems test, completion of which constitutes

readiness for flight.

Throughout Phase VI, responsible engineers and scientists at the MSFC

Payload Integration Center prepare and revise mission program and individual

experiment flight plans. Further, flight crews are trained (using simulators,

spares, and training aid devices) throughout this phase.

Duration:

135 hours

Facilities:

Payload Processing Facility - MSFC

Assembly Bay

Individual Refurbishment and Rooms

Simulator and Crew Training Facility

Space Astronomy Control Facility (Planning)

Launch Site (Planning)

Mission Control Center (Planning)

22



'qT' o-e r D

14 PIC-MSFC Transient Crew

1 Telescope Team, having:

1 Telescope Engineer

5 Telescope Technicians

1 Array Team, having:

1 Array Engineer

5 Array Technicians

1 SL Pallet Team, having:

1 SL Pallet Engineer

4 SL Technicians

PIC Ground Support Personnel: (Portion)

2 Crane Operators

6 Handling Crew

2 Facility Crew

2 Tractor Operators (PT Dolly)

- Tractor Operator (Lo-Boy)

- Electric Tractor Operator

Instruction and Planning Personnel:

2 Telescope Operation Instructors

2 Array Operation Instructors

2 Simulator Instructors

3 Mission Planning Specialists

1 Planning Supervisor

1 Telescope PI

1 Array PI

2 Flight Experiment Trainees
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1 PT Fixture

1 PT Dolly

1 ECCU

1 ECCU Lifting Sling Set

6 Work Stands

10 Work Tables

2 Polaroid Cameras

1 Ground Cooling Set

4 Payload Mounting Locks

4 Cable Slings

1 Telescope Handling Dolly

1 Array Handling Dolly

1 Electric Tractor

2 Video Tape Recorders

2 Instrumentation Tape Recorders

2 Digital Processing Consoles

2 Electronic Test Sets

2 Optical Alginment Test Sets

1 Pallet Payload Simulator

1 Computer and Peripheral Equipment

1 Reproduction Equipment

4 Portable Hoists

4 Push-Cart Dollies
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EVBNTS SEQUENCE AND RESOURCE REOUIREMENTS

PHASE VI

FUNCTION

A. Stabilize PPF-MSFC as
100,000 clean room

B. Remove ECCU

C. Physically inspect entire
payload and document inspection
on film and paper. Check recorder
strip charts from ECCU

D. Activate payload mounts and lock
in vertical positions for disassembly

E. Remove telescope payload from mount

F. Remove rray payload from moent

. LLove telescope and array to
individual refurbishmnt room

. Refurbishmt of individual
telescope and array payloads

VI-R-T1
VI-H-T2
VI-H-T3
VIH--I4

SEE FUIC
rI-H-Al
VI-R-A2
VI-H-A3
VI-E-A4
XI-H-A5

DURATION

8 hours

2 hours

8 hours

FACILITIES

PPF-HSFC Assembly Bay

PPF-NSFC Assembly Bay

PPF-NFPC Assembly Bay

2 hours PPF-HSFC Assembly Bay

6 hours PPF-SFPC Assembly Bay

4 hbite PPF-16FC Assebly Bay

1 hour PPIF-ISFC Assembly Bay
Payload refurbishent
room in PPP-IEFC

PPF-IEFC Assebbly Bay
Payload refurbishmt
room in PPF-I!FC

TINS FR EACH PAYLOAD

MANPOWER

NO SKILL

14 PIC-USFC Transient crew
2 Facility crew

14 PIC-ISFC Transient crew
2 Crane operators
6 Handling crew

14 PIC Transient crew
1 Telescope PI
1 Array PI
1 Telescope Team Having:

I Telescope engineer
5 Telescope technicians

1 Array Team Having:
1 Acrpay engineer
5 Array technicians

14 PIC: Trans ient crew
1 Telescope team
1 Array team

-14 PIC Transient crew
1 Telescope PI
1 Telescope tam

14 PIC Transient crew
1 Array tar
2 Crane operators
1 Array PI

1 '.,Array tam
1 Telescope tam
1 "Electric tractor operator

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 PT Fixture
1 PT Dolly
1 ECCU

1 PT Fixture
I PT Dolly
1 ECCU
1 ECCU lifting sling set

1 Detailed telescope check list
1 Detailed array check list
2 Polaroid cameras
6 Work stands
10 Work tables

6 Work stands
1 Ground cooling set
4 Payload mounting locks

4 Cable slings
2 Work stands
1 Telescope handling dolly

4 Cable slinsp
2 Work Stan"
1 Array handling dolly

1 Array handling dolly
1 Telescope handling dolly
1 Electric tractor

25



EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE VI (continued)

FUNCTION

I. Remove subsystem payload
peculiar components from
pallet and SL (failed;
life-limited; to be updated)

J. Replacement of subsybrem payload
peculiar components for new pay-
load on pallet and SL

K. Move new telescope and array
payloads from individual
refurbishment rooms to assembly
bay

L. Install telescope payload in mount

M. Install array payload in mount

N. Perform CST after removal of
payload mounting physical locks

O. Train flight experiment crewmen

P. Prepare integrated mission
program plan

Q. Prepare integrated experiment
flight plan

R. Final inspection of integrated
payload

DURATION

20 hours

30 hours

FACILITIES

PFF-MSFC Assembly Bay

PFF-MSFC Assembly Bay

2 hours Payload refurbishment
rooms in PPF-MSFC
PPF-MFC Assembly Bay

16 hours PPF-MSFC Assembly Bay

10 hours PPF-MSFC Assembly Bay

22 hours PPF-MSFC Assembly Bay

Continuous
during re-
furbishment
phase

Continuous
during re-
furbishment
phase

Continuous
during re-
furbishment
phase

4 hours

Simulator fazi-::y
PPF-MSFC

PIC-MSFC; Space Astrcnors
control facility: Launch
Site; Mission Control
Center

PIC-MSFC; Space Astronomy
control facility; Launch
Site: Mission Contrcl
Center

PPF-MSFC Assembly Bay

MANPOWER

NO. SKILL

14 PIC Transient crew
1 Telescope team
1 Array team
1 SL team
1 SL engineer
4 SL technicians

14 PIC Transient crew
1 Telescope team
1 Array team
1 SL team

1 Telescope team
1 Array team
I Electric tractor operator

PIC Transient crew
i Telescope PI

Telescope team

14 PIC Transient crew
I Array PI
; Array team

:4 PIC Transient crew
i Telescope PI
i Telescope team
I Array PI
I Array team

Telescope PI
Array PI
Telescope operation instructors

2 Array operation instructors
2 Simulator operators

3 Mission planning specialists
i Planning supervisor

3
1

14
1

1

1
2

Mission planning specialists
Planning supervisor

PIC Transient crew
Telescope team
Array team
Telescope PI
Array PI
Flight experiment crew

SUPPORT EQUIPMENT

NC. DESCRIPTION

4 Portable hoists
4 Push cart dollys
4 Cable slings

4 Portable hand operated hoists
4 Push cart dollys
4 Cable slings

1 Telescope handling dolly
I Array handling dolly
1 Electric tractor

Cable slings
Work stands
Telescope handling dolly

Cable slings
Work stands
Array handling dolly

Video tape recorders
Instrumentation tape recorder

2 Digital processing consoles
Electronic test sets

2 Optical alignment test sets

Pallet payload simulator
C Training and devices

1 Computer and peripheral equipment
1 Reproduction equipment

I Computer and peripheral equipment
1 Reproduction equipment

l Detailed telescope check list
1 Detailed array check list
6 Work stands
10 Work tables
2 Polaroid cameras
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VJMTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE VI - H-T1 (PHOTHELIOCRAPH)

FUNCTION

A. Inspection of Payload

B. Removal of particular (failed;
life limited; updated) components

OPTIONAL ITEMS IF REQUIRED

B-l Removal of mirrors for
recoating

B-2 Move mirrors to v'cuum
support facilzty

B-3 Recoating of mirrors

B-4 Move mirrors to refurbishment
room

B-5 Reinstall mirrors in instrument

C. Replacement of particular components

DURATION

4 hours

FACILITIES

PPF-MSFC individual
refurbishment room

12 hours PPF-MFC individual
refurbishment room

20 hours PPF-MSFC individual
refurbishment room

4 hours PPF-MSFC individual
refurbishment room
and vacuum deposit
room

24 hours Vacuum deposit room

8 hours PPF-MSFC individual
refurbishment room

32 hours PIP-MSFC individual
refurbishment room

15 hours

D. Perform CST and return to refurbishment 30 hours
room

E. Inspection of payload

P. Prep. for return to pallet mounting

8 hours

4 hours

PPFP-IPC individual
refurbishment room

PPF-MSFC vacuum chamber
facility; simulator facilt
optical support lab

PPP-MSFC individual
refurbishment room

PPFP-,SFC individual
refurbishment room

MANPOWER

NO. SKILL

1 Telescope Team, Having:
1 Telescope engineer
5 Telescope technicians

1 Telescope PI

1 Telescope team
1 Telescope PI

1 Telescope team
1 Telescope PI
1 Crane operator

1 Electric tractor operator
2 Facility technicians

3 Vacuum deposit equipment operator

1 Electric tractor operator
2 Facility technicians

1 Telescope team
1 Telescope PI
1 Crane operator

1 Telescope team
1 Telescope PI

1 Telescope team
ity; I Telescope PI

1 Electric tractor operator
I Crane operator
2 Vacuum chamber operators
2 Optical lab technicians
2 Simulator operators

1 Telescope team
1 Telescope PI

1 Telescope team
1 Telescope PI

2 Facility technicians

SUPPORT EQUIPMENT

NO. DESCRIPTION

2 Work stands
1 Telescope handling dolly
1 Detailed telescope inspection check list
1 Polaroid camera

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

2 Mirror handling dolly
1 5 ton overhead crane
4 Cable slings

2 Mirror handling dolly
1 Electric tractor

2 Mirror holding fixture

2 Mirror handling dolly
1 Electric tractor

2 Mirror handling dolly
1 5 ton overhead crane
4 Cable slings

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

1 Telescope handling dolly
1 5 ton overhead crane
4 Cable slings
1 Laser interferometer in special case
1 Video tape recorder
1 Instrumentation recorder
1 Monitoring and control console
1 Optical test set
1 Electronic test set
1 Digital processing equipment
1 Digital tape recorders
1 Electrical tractor

2 Work stands
1 Detailed telescope inspection check list
1 Polaroid camera
1 Telescope handling dolly

1 Telescope handling dolly
1 Protective cover
1 Flight log and flight ready documents
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EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE VI - H-T2 CAUV SHG: X-RAY TELESCOPE AND ICOC)

FUNCTION

A. Inspection of payload

B. Dismantle package in'.o 3 major
instruments

DURATION FACILITIES

4 hours PPF-MSFC individual
refurbishment room

8 hours PPF-MSFC individual
refurbishment room

NO. SKILL

.1 Telescope team chief

3 Telescope Teams, Each Having:
1 Telescope engineer
5 Telescope technicians

3 Telescope PI

3 Telescope teams
1 Telescope team chief
3 Telescope PI
1 Crane operator

SUPPORT EQUIPMENT

NO. DESCRIPTION

4 Work stands
I Solar telescope package handling dolly
I Detailed telescope package inspection

check list
I Polaroid camera

3 Telescope handling dollys
1 5 ton overhead crane
4 Cable slings
4 Work stands
I Solar telescope package handling dolly

C. Removal of particular' (failed;
life limited: to be updated)
components

OPTIONAL ITEMS IF REQULRED

XIV X-RAY ICOC

8.0 12.0 8.0 PPF-MSFC individual
refurbishment room

3 Telescope teams
1 Telescope team chief
3 Telescope PI

6 Portable hand operated hoists
6 Push cart dollys
6 Cable slings

C-1 Remove mirror for recoating 4.0 20.0 4.0 PFF-MSFC individual
refurbishment room

C-2 Move mirror to vacuum 4.0 4.0 4.0 PPF-MSFC individual

deposit support facility refurbishment room and
deposit room

C-3 Recoating of mirror 24.0 48.0 12.0 Vacuum deposit room

C-4 Move mirror to refurbish- 4.0 8.0 2.0 PPF-MSPC individual

ment room refurbishment room

C-5 Reinstall mirror in 24.0 48.0 12.0 PPF-MSFC individual

instrument refurbishment room

D. Replacement of particular 12.0 18.0 12.0 PPF-MSFC individual

components refurbishment room

E. Reassemble 3 major instruments into 12 hours PPF-MSFC individual

solar telescope package refurbishment room

1 Telescope PI
1 Telescope team

2 Facility technicians

3 Vacuum deposit equipment operator

2 Facility technicians

i Telescope team
1 Telescope PI

3 Telescope teams
1 Telescope team chief
3 Telescope PI

3 Telescope teams
I Telescope team chief
3 Telescope PI
1 Crane operator

1 Mirror handling dolly

1 Mirror handling dolly

I Mirror holding fixture

1 Mirror handling dolly

1 Mirror handling dolly

6 Portable hand operated hoists
6 Push cart dollys
6 Cable slings

4 Work stands
1 5 ton overhead crane
3 Special telescope handling dolly
1 Solar telescope package handling dolly
4 Cable slings

28



EVENTS SEQUENCE AND RESOURCE REQUIREMENTS
1SE1 VI - N-Tf (cont)

FUNCTION

F. Perform CST and return to
refurbishment room

G. Inspection of payload

E. Prep. for return to pallet mounting

DURATION

30 hours

8 hours

4 hours

FACILITIES

PPF-MSFC simulator
facility; optical
support lab

PPF-HSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

MANPOWER

NO. SKILL

3 Telescope teams
I Telescope team chief
3 Telescope PI
1 Electric tractor operator
1 Crane operator
2 Simulator operators
2 Opticaf lab technicians

3 Telescope teams
1 Telescope team chief
3 Telescope PI

3 Telescope team
1 Telescope team chief
3 Telescope PI
2 Facility technicians

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Electric tractor
1 Solar telescope package handling dolly
1 5 ton overhead crane
4 Cable slings
3 Video tape recorded
3 Instrumentation tape recorder
3 Monitoring and control console
3 Optical test set
3 Electronic test set
3 Digital processing equipment
3 Digital tape recorder

4 Work stands
1 Solar telescope package handling dolly
1 Detailed telescope package inspection

check list
1 Polaroid camera

1 Solar telescope package handling dolly
1 Protective cover
1 Flight log and flight ready documents
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EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE VI - H-T3 (STRATOSCOPE III)

FUNCTION DURATION

A. Inspection of payload 4 hours

B. Removal of particular 'failed; 12 hours
life limited; to L. updated)
components

OPrIOwAL rITU IF REQUIRED

B-1 Remval of mirrors for recoating 40 hours

B-2 Eve mirrors to vacuum deposit 4 hours
support facility

B-3 Recoating of mirrors 32 hours

B-4 Move mirrors to refurbishment 8 hours
room

B-5 Reinstall mirrors in instrument 60 hours

C. Replacement of particular components 15 hours

D. Perform CST and return to refurbishment 40 hours

E. Inspection of payload

'. Trcp. for return to pallet mounting

8 hours

4 hours

FACILITIES

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room and
vacuum deposit room

Vacuum deposit room

PPF-MSFC individual
refurbishment room

PPF-HSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-MSFC simulator
facility; optical
support lab

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

MANPOWER

NO. SKILL

1 Telescope Team Having:
I Telescope engineer
5 Telescope technicians

1 Telescope PI

1 Telescope team
1 Telescope PI

1 Telescope team
I Telescope PI
1 Crane operator

1 Electric tractor operator
2 Facility technicians

3 Vacuum deposit equipment operator

1 Electric tractor operator
2 Facility technicians

1 Telescope team
1 Telescope PI
1 Crane operator

1 Telescope team
1 Telescope. PI

1 Telescope team
1 Telescope PI
1 Electric tractor operator
1 Crane operator
2 Optical lab technicians
2 Simulator operators

1 Telescope team
1 Telescope PI

1 Telescope team
1 Telescope PI
2 Facility technicians

SUPPORT EQUIPMENT

NO. DESCRIPTION

2 Work stands
1 Telescope handling dolly
I Detailed telescope inspection check list
i Polaroid camera

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

2 Mirror handling dolly
1 5 ton overhead crane
4 Cable slings

2 Mirror handling dolly
1 Electric tractor

2 Mirror holding fixtures

2 Mirror handling dolly
I Electric tractor

2 Mirror handling dolly
1 5 ton overhead crane
4 Cable slings

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

I Electric tractor
1 Telescope handling dolly
1 5 ton overhead crane
4 Cable slings
I Video tape recorder
1 Instrumentation tape recorder
1 Monitoring and control console
I Optical test set
1 Electronic test set
1 Digital tape recorder
2 Work stands
1 Detailed telescope inspection check list
1 Polaroid camera
1 Telescope handling dolly

I Telescope handling dolly
1 Protective cover
1 Flight log and flight ready documents
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-i ,TS SEQ9ENCE AND RESOURCE REQUIREMFNT5

PHASE Vi - H-T4 (IR TELESCOPE)

FUNCTION DURATION

A. Inspection of Payload 4 hours

B. Purging of cryogenic cooling 4 hours
shroud

C. Removal of particular (failed; 15 hours
life limited; to be updated)
components

OPTIONAL ITEM IF REQUIRED

C-1 Removal of mirrors for 40 hours
recoating

C-2 Pove mirrors to vacuum deposit 4 hours
facilitv

C-3 Recoating of mirrors 32 hours

C-4 Move mirrors to refurbishment 8 hours
room

C-5 Reinstall mirrors in instrument 60 hours

D. Reolacaent of particular components 20 hours

E. Perform CST and return to refurbishment 40 hours
room

FACILITIES

PPF-MSFC individual
refurbishment room

PPF-MSPC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-NSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room and
vacuum deposit room

Vacuum deposit room

PPF-ISFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF-HSFC simulator
facility; optical
support lab

MAN POWER

NO. SKILL

I Telescope Team Having:
1 Telescope engineer
5 Telescope technicians

I Telescope PI

1 Telescope team
2 Facility technicians

I Telescope team
I Telescope PI

1 Telescope team
1 Telescope PI
1 Crane operator

1 Electric tractor operator
2 Facility technicians

3

1
2

1
t
1

1
1

1
1
l
1
2
2

Vacuum deposit equipment operator

Electric tractor operator
Facility technicians

Telescope team
Telescope PI
Crane operator

Telescope team
Telescope PI

Telescope team
Telescope PI
Electric tractor operator
Crane operator
Optical lab technicians
Simulator operators

SUPPORT EOUIPMENT

NO. DESCRIPTION

2 Work stands
I Special telescope handling dolly
1 Detailed telescope inspection check list
1 Polaroid camera

1 Facility gas supply source
1 Gas supply line with valve
1 Gas exhaust line with valve

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

2 Special mirror handling dolly
1 5 ton overhead crane
4 Cable slings

2 Special mirror handling dolly
1 Electric tractor

2 Special mirror handling dolly
1 Electric tractor

2 Special mirror handling dolly
1 Electric tractor

1 5 ton overhead crane
2 Special mirror handling dolly
4 Cable slings

2 Portable hand operated hoists
2 Push cart dollys
4 Cable slings

1 Electric tractor
1 Special telescope handling dolly
1 5 ton overhead crane
4 Cable slings
1 Facility cryogenic gas supply source
1 Cryogenic gas supply line with valve
1 Cryogenic gas exhaust line with valve
1 Video tape recorder
1 Instrumentation tape recorder
1 Monitoring and control console
1 Optical test set
1 Electronic test set
1 Digital tape recorder
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EVENT SEQ UE AND RESOURCE REQUIREHENTS

PHASE VI - H-T4 (cont)

FUNCTION

F. Inspection of Payload

C. Prep. for return tr Pa'let bountin

DURATION FACILITTES

8 hours PPF-S6FC esiulator
facility; optical
support lab

4 hours PPF-PSFC simulator
facility; optical
support lab

MANPOCER

NO. SKILL

1 Telescope team
1 Telescope PI

1 Telescope team

SUPPORT EQUIPMENT

NO. DESCRIPTION

2 Work stands
1 Special telescope handling dolly
1 Detailed telescope inspection check list
1 Polaroid camera

1 Special telescope handling dolly
1 Protective cover
1 Flight log and flight ready documents
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WSarTS S-UENCE AND RESOURCE REQUIREMENTS
YRASE VI - H-Al (WIDE COVERAGE X-RAY DETECTOR)

FUNCTION

A. Inspection of Payload

B. Removal of particular (failed;
life limited; to be updated)
component

C. Replacement of particular components

D. Perform CST and return to
refurbishment room

B. Inspection of payload

P. Prep. for return to pallet mounting

DURATION FACILITIES

4 hours PPF-MSFC individual
refurbishment room

12 hours PPF-SFPC individual
refurbishment room

15 hours PPF-PSFC individual
refurbishment room

24 hours PPF-SPC siaulator
facility; X-ray source
calibration facility

4 hours

4 hours

PPF-SFPC individual
refurbishment room

PPF-SMC individual
refurbishment room

MANPOWER

NO. SKILL

1 Array Team Having:
1 Array engineer
5 Array technicians

I Array PI

1 Array team
1 Array PI

1 Array team
1 Array PI

1 Array team
1 Array PI
1 Electric tractor operator
2 X-ray room technicians
2 Simulator operators

1 Array team
1 Array PI

1 Array team
1 Array PI
2 Facility technicians

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Special array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid camera

1 Special array handling dolly
4 Work stands
2 Portable hand operated hoists
2 Push cart dolly.
4 Cable slings

1 Special array handling dolly
4 Work stands
2 Portable hand operated hoists
2 Push cart dolly.
4 Cable slings

1 Special array handling dolly
1 Electric tractor
1 Instrumentation tape recorder
1 Monitoring and control console
1 Electronic test set
1 Digital processing unit
1 Digital tape recorder

4 Work stands
1 Special array handling dolly
1 Detailed array inspection check list
1 Polaroid camera

1 Special array handling dolly
1 Protective cover
1 Plight log and flight ready documents
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EENTS SEQUENCE AND RESOURCE REQUIRMENTS

PHASE VI - H-A2 (NARROW BAND SPECTROMETER/POLARIMETER)

FUNCTION DURATION

A. Inspection of payload

B. Gas purging and replenishment
in sectored proportional counters

C. Ramoval of particular (failed;
life limited; to be updated)
components

D. Replacement of particular components

E. Perform CST and return to
refurbishment room

P. Inspection of payload

G. Prep. for return to pallet mounting

4 hours

FACILITIES

PPF-MSFC individual
refurbishment room

3 hours PPF-MSFC individual
refurbishment room

12 hours PPF-MSFC individual
refurbishment room

15 hours PPF-MSFC individual
refurbishment room

24 hours PPF-MSFC simulator
facility; X-ray scurce
calibration facility

4 hours PPF-MIPC individual
refurbishmmt room

4 hours PPF-MSFC individual
refurbiahment room

MANPOWER

NO. SKILL

1 Array Team Having:
I Array engineer
5 Array technicians

1 Array PI

I Array team
1 Array PI

1 Array team
1 Array PI

1 Array team
1 Array PI

I Array team
I Array PI
1 Electric tractor operator
2 X-Ray rooa technician
2 Simulator operator

I Array team
1 Array PI

1 Array team
1 Array PI
2 Facility technician

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid camera

1 Array handling dolly
4 Work stands
1 Facility gas storage area
1 Gas supply line
1 Gas exhaust line

I Array handling dolly
4 Work stande
2 Portable hand operated hoists
4 Cable slings
2 Push cart dollys

1 Array handling dolly
4 Work stands
2 Portable hand operated hoists
4 Cable slings
2 Push cart dollys

1 Array handling dolly
1 Electric tractor
I Instrumentation tape recorder
1 Monitoring and control console
1 Electronic test set
1 Digital processing unit
1 Digital tape recorder

4 Work atands
1 Array handling dolly
I Detailed array inspection check list
1 Polaroid camra

1 Array handling dolly
1 Protective cover
1 Flight log and flight reasdy documents
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-1.S S-CE AWD RESCORCE REQUIRgEMIS
'iuSE YI - H-A3 (7 -RAY SPECTRO1ETER AND LOW

rUNCTION DURATION

A. Inspection of Payload

B. Removal of continuously cryo cooled
spectrometer detector unit and move-
ment to cryogenic work room

C. Inspection, adjustmlent, calibration
of detector unit

D. Removal of particular (failed;
life limited; to be updated)
componante

E. Replacement of particular components

F. Installation of continuously cryo
cooled opectrometer detector unit

C. Perform CST and return to
refurbiahmbnt room

A. Inspection of payload

I. Prep. for return to pallet mounting

FACILITIES

4 hours PPF-YSFC individual
refurbishment room and
controlled laow humidity
atmosphere

4 hours PFW-1SFC individual
refurbishment toom,
controlled low humidity
atuosphere, and cryogenic
work room

24 hours Cryogenic work room

12 hours PFP-MSFC individual
refurbishment room

15 hours PFF-YSFC individual
refurbishment room

4 hours PPF-16FC individual
refurbishmnt room

24 hours PPF-IEFC simalator
facility; 7-Ray
sorce calibration
facility

4 hours FP-wC individual
refurbish-nt room

4 hos Fr-wC individual
refurbishmnt room

MANPOWER

NO. SKILL

1 Array Team Having:
1 Array ungineer
5 Array technicians

1 Array PI

1 Array team
1 Array PI
1 Facility technician

2 Facility technician
1 Array PI

1 Array team
1 Array PI

1 Array team
1 Array PI

1 Array team
1 Array PI

*1 Facility technician

1 -Array team
1 Array PI
I Electric tractor operator
2 7-Ray room tecbnic=s
2 Simulator operators

*1 Facility techniciam

I Array team
I Array PI

1 Array taam
1 Array FI

*2 Facility technician

SUPPORT EOUI PIENT

NO. DESCRIPTION

1 Array handling dolly
4 Work stands
I Detailed array inspection check list
1 Polaroid camera

1 Array handling dolly
4 Work stands
1 Portable hand operated hoist
1 Cryogenic handling and movement cart

1 Cryogenic handling and movement cart
1 Facility gas storage area
1 Cryogenic gas supply line
1 Cryogenic gas exhaust line

1 Array handling dolly
4 Work stands
2 Portable hand operated hoist
4 Cable sling
2 Push cart dolly

1 Array handling dolly
4 Work stands
2 Portable hand operated hoists
4 Cable slings
2 Punh cart dollys

1 Array handling dolly
4 Work atands
1 Portable hand operated hoist
I Cryogenic handling and movement cart

1 Array handling dolly
1 Electric tractor
1 Instruatation tape recorder
1 Monitoring and control console
1 Eleetronic test sat
1 Digital processing unit
1 Digital tape recorder

1 Array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid cara

1 Array handling dolly
1 Protective cover
1 Flight log and flight ready documents
1 Cryogenic gas supply line

**1 Cryogenic gas exhaust line

° ?':J:,;u 5 anz cryogenic flow and supply to dotector mat be onitored periodically by technician

:.- '- -. 2oleda to fecility cryo supply for long term storage
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EVmrs SQUENCE AD RESURCE REQUIREIENTS

PHASE VI - H-A4 (LARGE MODULATIQN COLLIAR)

FUNCTION

A. Inspection of payload

B. Dry gas purge of insttiv3nt

C. Removal of particular (failed;
life limited; to be updated)
components

D. Replacement of particular components

E. Gas purge and replenishment of
gas in proportional counters

r. Perform CST and return to
refurbishment room

G. Inspection of payload

H. Prep. for return to pallet mounting

DURATION

4 houra

3 hours

FACrLITIES

PPF-MSFC individual
refurbishment room

PIP-MSFC individual
refurbishment room

12 hourn PFF-MSFC individual
refurbishment room

15 hours PPF-MSFC individual
refurbishment room

3 hours PPFF-MSFC individual
refurbishment room

24 hours PPF-MSFC simulator
facility; X-ray source
calibration fagility

4 hours

4 hours

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

MANPCWER

NO SKILL

1 Array Team Having:
1 Array engineer
5 Array technicians

I Array PI

1 Array team
I Array PI
2 Facility technician

1 Array team
1 Array PI

1 Array team
I Array PI

I Array team
1 Array PI
2 Facility technician

1 Array team
1 Array PI
1 Electric tractor operator
2 X-Ray room technician
2 Simulator operator

1 Array team
1 Array PI

1 Array team
I Array PI
2 Facility technicians

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid camera

1 Array handling dolly
4 Work stands
1 Facility gas storage supply
1 Gas purge and blanket unit

1 Array handling dolly
4 Work stands
2 Portable hand operated hoists
4 Cable slings
2 Push cart dollys

1 Array handling dolly
4 Work stands
2 Portable hand operated hoists
4 Cable slings
2 Push cart dollys

1 Array handling dolly
4 Work stands
1 Facility gas storage supply
1 Gas supply line
1 Gas exhaust line

I Array handling dolly
Electric tractor

1 Instrumentation tape recorder
1 Monitoring and control console
1 Electronic test set
I Digital processing unit
I Digital tape recorder

1 Array handling dolly
4 Work stands
I Detailed array inspection check list
1 Polaroid camera

1 Array handling dolly
1 Protective cover
1 Flight log and flight ready documents
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lr3lS SEQIIENCE AND RESOURCE REQUIREMENTS
LSvE VI - H-A5 (LARGE AREA X-RAY DETECTOR AND COLLIMATED PLANE CRYSTAL SPECTRCMETER)

FUNCnI DURATION

A. Inspection of payload

B. Disassembly into 2 separate
instruments

C. Dry gas purge of large reae
C-ray detector

D. Resoval of particular (failed;
life limited; to be updated)
comonents (Both instruments)

E. Replacement of particular
(Both instruments)

F. Gas purging and replenishment in
sectored proportional counters of
large area X-ray detector

G. Reassemble instruments into array
package

B. Perform CST and return to
refurbishment room

4 hours

4 hours

3 hours

FACILITIES

PPF-MSFC individual
refurbishment room

PPF-MSFC individual
refurbishment room

PPF -MFC individual
refurbishment area

24 hours PPF-MSFC individual
refurbishment room

30 hours PPF-MSFC individual
refurbishment room

3 hours PPF-NSFC individual
refurbishment room

5 hours PPF-MEFC individual
refurbishment room

24 hours PPF-SFC simulator
facility; X-ray source
calibration facility

MANPOWER

NO. SKILL

2 Array Teams, Each Having:
1 Array engineer
5 Array technicians

2 Array PI

2 Array teams
2 Array P'a
1 Crane operator

1 Array team
1 Array PI
1 Facility technician

2 Array teams
2 Array PI

2 Array teams
2 Array PI

I Array teams
I Array PI
I Facility technician

2 Array teams
2 Array PI
1 Crane operator

2 Array teams
2 Array PI
1 Electric tractor operator
2 X-ray room technician
2 Similator operator

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid camera

1 Array handling dolly
2 Instrument handling dolly
4 Work stands
1 5 ton overhead crane
4 Cable slings

I Instrument handling dolly
1 Work stand
1 Facility gas storage area
1 Gas purge and blanket unit

2 Instrument handling dolly
4 Work stands
2 Portable hand operated hoist
4 Cable slings
2 Push cart dollys

2 Instrument handling dolly
4 Work stands
2 Portable hand operated hoist
4 Cable slings
2 Push cart dollys

I Instrument handling dolly
I Work satand
1 Facility gas storage area
1 Gas supply line
1 Gas exhaust line

2 Instrument handling dollys
1 Array handling dolly
4 Work stands
1 5 ton overhead crane
4 Cable slings

1 Array handling dolly
1 Electric tractor
2 Instrumentation tape recorder
2 Monitoring and control console
2 Electronic test set
2 Digital processing unit
2 Digital tape recorder
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EVENTS SEQUENCE AND RESOURCE REQUIREMENTS

PHASE VI - H-5A (continued)

FUNCTION

I. Inspection of payload

J. Prep. for return to pallet mounting

DURATION FACILITIES

4 hours PPF-SPFC individual
refurbishment room

4 hours PPF-MSFC individual
refurbishment room

MANPCWER

NO. SKILL

2 Array teams
2 Array PI

2 Array teams
2 Array PI
2 Facility technician

SUPPORT EQUIPMENT

NO. DESCRIPTION

1 Array handling dolly
4 Work stands
1 Detailed array inspection check list
1 Polaroid camera

I Array handling dolly
1 Protective cover
1 Flight log and flight ready documents
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S7ACE ASTR(MOZTff C('tROL FACILITY FUNCTIONS AND RESOURCES

MANPOWER

NO SKILL

SUPPORT EQUIPNENT

DESCRIPTION

PHASE I

PI consultation support to
Pavyload Integration Center
Transient Crew

PHASE II

PI representative support at
Shuttle Launch Site

PHASE III

EXperinent Operations Support and
Control

Support realtisn P-.parl.nt
operation
Consult with experirnut designers
for problem solving
Coordinate operations for targets
of opportunity
Liaison with PIC (PFC)
Liaison vith Launch and Landing
Site

Coordinate World Wide Observatories
Consult with astronomers
Evaluate targets suggested by other
observatories
Arrange for observation by other
observatories to support and
co plemsnt these missions

PHASE IV

PI representative support at Shuttle
Landing Site

EABSE V

PI consultation support to Psyload
Integration Center Transient Crew

Remove scientific film and tape data
packages; packae for shipant to SACF
deliver to SAC by courier

42 hours 1 Telescop' PI
1 Wide coverage X-ray array PI
1 Array PI

190 hours Office at Shuttle Launch Site

168 hours Office at SACF
Observatory Facility

Office at SA[C
Observation Facility

42 hours Office at Shuttle Landing
Site

34 hours

Experimnt/ca rier
processing facility
Pack and ship facility

1 Telescope PI
1 Wide coverage X-ray array PI

1 Telescope PI
1 Wide coverage X-ray array PI
1 ArraT PI
9 Experiment specialists

1 Telescope PI
1 Wide coverage X-ray array PI
1 Array PI
9 Experiment specialists

1 Telescope PI
1 Wide coverage X-ray array PI
1 Array PI

1 Telescope PI
1 Wide coverage X-ray array PI
1 Array PI

4 xperiment technician
1 Courier

Telephone voice and facsimile link between
SACF and PIC (NSFC) and Shuttle Launch Site

Telephone voice link between Shuttle Launch Site
and SACF

Telephone voice and facsimile link between
SACF and Shuttle Mission Control, the PIC (MSPC)
and Shuttle Launch Site

Telephone voice between SACF and cooperating
world-wide observatories

Telephone voice link between Orbiter Landing
Site and SACF

Telephone voice link between Orbiter Landing
Site and SACF

Commercial air Landing Site to SACP
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SPACE ASTE-.C'f'.:' GOXNTRUCL FACII:I FUNCTIONS AND RESaJRCES

X'ANPOWER

NO. SKILL DESCRIPTION

PHASE VI

Process Photographic Film
Reduce Electronic Data

File and disseminate data

Prepare and maintain experiment
mission program plans

Prepare detailed experiment
flight plans

Support training of flight crew

*35 nours Film Processing Lab
Computer Facility

Pack and Ship Facility
Library Facility

Office at SACF

Office at SACF

Payload Integration Center

Film processing technicians
Computer programmer/operator

I Telescope PI
1 W ide coverage X-ray array PI

1 Array PI

; Ielescope PI
1 Wide coverage X-ray array PI
1 Array PI
3 Experiment specialists

Telescope PI
I Wide coverage X-ray array PI
I Array PI
3 Experiment specialists

3 Experiment specialists

Processing equipment and chemicals to process:
95,000 frames per mission for Solar Payloads
8,000 frames per mission for S III Payloads

3AB, 3AC, 3AD, and 3AE
Tape readers, computers. and printers to
process: 4.1 X 10' bits per mission for Solar
Payload 1-2

1.9 X 10 9 bits per mission for 3AB
4.6 X 10 9 bits per mission for 3AC
3.6 X 10 9 bits per mission for 3AD
3.8 X 109 bits per mission for 3AE
1.3 X 10 9 bits per mission for 4AB
4.0 X 109 bits per mission for 4AC
3.0 X 109 bits per mission for 4AD
3.5 X 109 bits per mission for 4AE

Tables, chairs. viewers, Frcjectcrs
for 3 scientists

Desks, chairs, typewriters. reproduction
equipment

Desks, chairs, typewriters, reproduction
equipment
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APPENDIX A3

MISSION PROFILE

INTRODUCTION PAGE

This appendix includes:

(1) The preliminary mission sequences and flight
profiles for the Stratoscope III and IR
Telescope payloads 2

(2) Final mission sequences and flight profiles
for Solar Payload 1-2 12

(3) Trade Study Report, Performing Critical Roles
and Functions i

I



STRATOSCOPE III PAYLOAD 3AC
MISSION ASSUMPTIONS

1. Sortie Lab is pressurized on ground and isolated from shuttle

by crew access hatch.

2. Inclination 0.497 radian (28.5 degrees)

3. Operations altitude 463 km (250 n. mi.)

4. Fly mission anytime of year; launch anytime of day.

5. Initiate deorbit 45 minutes prior to revolution 107 which passes within

orbiter crossrange capability at 166 hrs. 42 min. elapsed time. Total

mission duration launch to initiate deorbit is 165 hr. 57 min.
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STRATOSCOPE III PAYLOAD 3AC
MISSION SEQUENCE AND FLIGHT PROFILE

ELAPSED TIME EVENT
(HR:MIN)

00:00 LIFTOFF
00:06.5 INSERT INTO 93 X 185 KM (50 X 100 NMI) ORBIT
00:50.1 TRANSFER TO 185 X 463 KM (100 X 250 NMI) ORBIT

AT FIRST APOGEE
01:36.1 CIRCULARIZE AT 463 KM (250 NMI) ORBIT AT FIRST

APOGEE. STABILIZE, CHECKOUT ORBITER
SYSTEMS, UPDATE EPHEMERIS, OPEN ORBITER
CARGO BAY DOORS, VERIFY READINESS TO PROCEED
WITH EXPERIMENT OPERATIONS

02:00 ORBITER COARSE-ATTITUDE ACQUISITION
02:30 REMOTE CHECKOUT OF SORTIE LAB SUBSYSTEMS

VERIFICATION: ELECTRICAL POWER; ENVIRONMENTAL
CONTROL/LIFE SUPPORT; CONTROL & DISPLAY;
THERMAL CONTROL; COMMUNICATIONS/DATA
MANAGEMENT; GUIDANCE, NAVIGATION AND CONTROL

02:45 VERIFY SORTIE LAB HABITABILITY AND OPEN
CREW ACCESS HATCH

03:00 SORTIE LAB CHECKOUT BY SCIENTIFIC CREW
VERIFY EC/LS CAUTION AND WARNING SUBSYSTEM;
VERIFY COMMUNICATIONS/DATA MANAGEMENT SUBSYSTEM;
VERIFY SUBSYSTEMS CONTROL AND DISPLAY PANELS;
VERIFY ELECTRICAL POWER DISTRIBUTION TO PALLET;
VERIFY PALLET THERMAL CONTROL SUBSYSTEM; TURN
ON GUIDANCE, NAVIGATION AND CONTROL SUBSYSTEM

03:30 PERFORM VISUAL INSPECTION OF TELESCOPE AND ARRAYS

TELESCOPE DEPLOYMENT
03:40 RELEASE' TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
03:42 ROTATE DEPLOYMENT YOKE TO 90 DEGREE POSITION AND

LOCK
03:57 PITCH TELESCOPE COARSE GIMBAL INTO INITIAL

OPERATIONS POSITION
04:12 RELEASE AZIMUTH TABLE LOCKS
04:14 RELEASE LAUNCH LOCKS TO PROTECT PRIMARY AND

SECONDARY MIRRORS ASSEMBLIES

TELESCOPE POST-DEPLOYMENT CHECKOUT
04:16 OPEN COVERS ON OPTICS, EXTEND SHIELD
04:28 FUNCTIONAL CHECK CONSOLE SYSTEMS
04:40 ACTIVATE AND CHECKOUT DRIVES
04:46 TURN ON MAIN POWER TO INSTRUMENT DETECTORS
04:48 MONITOR TEMPERATURE CONTROL SYSTEM UNTIL

STABILIZATION (24 MINUTES REQUIRED)
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ELAPSED TIME EVENT
(HR:MIN)

GAMMA-RAY SPECTROMETER AND LOW BACKGROUND GAMMA-RAY
DETECTOR DEPLOYMENT

04:50 RELEASE ARRAY GIMBAL MOUNT LAUNCH LOCKS
04:52 ROTATE ARRAY DEPLOYMENT YOKE TO 90-DEGREE POSITION

AND LOCK
04:07 PITCH ARRAY COARSE GIMBAL INTO INITIAL OPERATIONS

POSITION
04:22 RELEASE AZIMUTH TABLE LOCKS

WIDE COVERAGE X-RAY DEPLOYMENT
04:24 RELEASE ARRAY MOUNT LAUNCH LOCKS
04:26 DEPLOY WIDE COVERAGE X-RAY ARRAYS
04:41 ROTATE WIDE COVERAGE X-RAY ARRAY

HALVES TNTO OPERATTIONS PnSITTON

WIDE COVERAGE X-RAY ARRAY CHECKOUT
04:51 PERFORM SAFETY CHECK
04:53 TURN ON ELECTRICAL POWER
04:54 PERFORM ELECTRICAL CHECK
04:55 PERFORM BUILT-IN CALIBRATION

GAMMA-RAY SPECTROMETER AND LOW BACKGROUND GAMMA-RAY
DETECTOR CHECKOUT

05:05 PERFORM VISUAL SAFETY CHECK
05:15 TURN ON ELECTRICAL POWER
05:17 RELEASE LAUNCH RESTRAINTS AND DEPLOY DETECTOR

PACKAGE
05:19 PERFORM FUNCTIONAL CHECK
05:29 PERFORM ELECTRONICS CALIBRATION
05:39 ESTABLISH ORIENTATION REFERENCES
05:44 INITIATE REPEATABLE ON-ORBIT OPERATIONS SEQUENCE

FOR TELESCOPE AND ARRAYS

...THE WIDE COVERAGE X-RAY ARRAY AND THE GAMMA RAY SPECTROMETER AND LOW
BACKGROUND GAMMA RAY DETECTOR ARE OPERATED CONTINUOUSLY (EXCEPT FOR PERIODS
OF AUTOMATIC SHUTDOWN DURING PASSAGE THRU THE SOUTH ATLANTIC ANOMALY) UNTIL
TERMINATION OF EXPERIMENT OPERATIONS AT 161 HRS 11 MINUTES.

TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE FOR STRATOSCOPE III,
REQUIRING 91 MINUTES PER CYCLE (70 MINUTES PER CYCLE OBERVATION TIME) IS
PERFORMED 102 TIMES (PLUS ONE PARTIAL CYCLE ENDING AT...

161:11 RETRACT SHIELD, CLOSE COVERS ON TELESCOPE OPTICS
161:31 SECURE LAUNCH LOCKS TO PROTECT PRIMARY AND SECONDARY

MIRRORS ASSEMBLIES OF TELESCOPE
161:37 SECURE TELESCOPE AZIMUTH TABLE LOCKS
161:39 TURN OFF ELECTRICAL POWER TO WIDE COVERAGE X-RAY

ARRAY
161:41 ROTATE WIDE COVERAGE X-RAY ARRAY HALVES INTO STOWING

POSITION
161:47 RETRACT WIDE COVERAGE X-RAY ARRAYS INTO STOWED

POSITION
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162:02 SECURE ARRAY MOUNT LOCKS
162:04 TURN OFF ARRAY CONTROLS AND DISPLAYS
162:06 RETRACT GAMMA-RAY ARRAY DETECTOR PACKAGE AND SECURE

LAUNCH RESTRAINTS
162:11 SWITCH GAMMA-RAY ARRAYS ELECTRICAL POWER TO STANDBY
162:13 SECURE GAMMA-RAY ARRAYS AZ/IUTH TABLE LOCKS
162:15 PITCH ARRAY COARSE GIMBAL INTO STOWING POSITION
162:45 RELEASE ARRAY DEPLOYMENT YOKE, ROTATE INTO STOWED

POSITION AND LOCK
163:15 SWITCH GAMMA-RAY ARRAYS CONTROLS AND DISPLAY PANELS

TO MONITOR CRYO SYSTEM ONLY
163:17 PITCH TELESCOPE COARSE GIMBAL INTO STOWED POSITION
163:47 RELEASE DEPLOYMENT YOKE LOCK AND ROTATE INTO STOWED

POSITION
164:17 SECURE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
164:19 TURN OFF TELESCOPE THERMAL CONTROL SYSTEM
164:21 TURN OFF MAIN POWER TO INSTRUMENT DETECTORS
164:23 TURN OFF CONTROLS AND DISPLAYS PANELS

SECURE SORTIE LAB AND PALLET
164:24 TURN OFF SORTIE LAB GUIDANCE, NAVIGATION AND

CONTROLS SUBSYSTEM; SWITCH PALLET THERMAL CONTROL
SYSTEM TO STANDBY; SWITCH PALLET ELECTRICAL POWER
DISTRIBUTION TO STANDBY

164:31 SCIENTIFIC CREW TRANSFER TO ORBITER STATIONS
164:41 CLOSE ACCESS HATCH TO SORTIE LAB
164:51 SWITCH SORTIE LAB SUBSYSTEMS TO STANDBY
164:57 CHECKOUT ORBITER, PREPARE FOR RETURN TO EARTH
165:57 INITIATE DEORBIT
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TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE

STRATOSCOPE III

The Stratoscope III telescope is limited to viewing no closer than

45 degrees to the Sun and 15 degrees to the Earth and Moon. This constraint

permits targets within the 15% of the celestial sphere more than 83.4 degrees

from the orbit plane (in either direction) to be continuously viewable.

Targets not within the cones of continuous visibility are viewable from at

least 50 minutes per orbit to 93.7 minutes per orbit, depending on their

angle from the orbit plane, except for about 15% of the celestial sphere which

is continuously occulted by the Sun.

Based on these constraints, a desired observation duration of 70 minutes

was selected for developing the following typical repeatable on-orbit operations

sequence:

MINUTES FUNCTION

12 A. Point Telescope to Acquire Target

1 B. Select Filter or Grating

7 C. Calibrate

70 D. Observe

1 E. Rotate Mirror

TOTAL 91
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IR TELESCOPE PAYLOAD 4AC
MISSION ASSUMPTIONS

1. Sortie Lab is pressurized on ground and isolated from shuttle

by crew access hatch.

2. Inclination 0.497 radian (28.5 degrees)

3. Operations altitude 463 km (250 n. mi.)

4. Fly missions during new moon periods; launch anytime of day

5. Initiate deorbit 45 minutes prior to revolution 107 which passes

within orbiter crossrange capability at 166 hrs. 42 min. elapsed

time. Total mission duration launch to initiate deorbit is 165 hrs.

57 min.
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IR TELESCOPE PAYLOAD 4AC
MISSION SEQUENCE AND FLIGHT PROFILE

ELAPSED TIME EVENT
(HR:MIN)

00:00 LIFTOFF
00:06.5 INSERT INTO 93 X 185 KM (50 X 100 NMI) ORBIT
00:50.1 TRANSFER TO 185 X 463 KM (100 X 250 NMI) ORBIT AT

FIRST APOGEE
01:36.1 CIRCULARIZE AT 463 KM (250 NMI) ORBIT AT FIRST

APOGEE. STABILIZE, CHECKOUT ORBITER SYSTEMS,
UPDATE EPHEMERIS, OPEN ORBITER CARGO BAY DOORS,
VERIFY READINESS TO PROCEED WITH EXPERIMENT
OPERATIONS

0200 ORDIT U COARSE-ATTITUDE ACQU-IsitiON
02:30 REMOTE CHECKOUT OF SORTIE LAB-

SUBSYSTEMS VERIFICATION; ELECTRICAL POWER;
ENVIRONMENTAL CONTROL/LIFE SUPPORT; CONTROL AND
DISPLAY; THERMAL CONTROL; COMMUNICATIONS/DATA
MANAGEMENT; GUIDANCE, NAVIGATION AND CONTROL

02:45 VERIFY SORTIE LAB HABITABILITY AND OPEN
CREW ACCESS HATCH

03:00 SORTIE LAB CHECKOUT BY SCIENTIFIC CREW
VERIFY EC/LS CAUTION AND WARNING SUBSYSTEM;
VERIFY COMMUNICATIONS/DATA MANAGEMENT SUBSYSTEM;
VERIFY SUBSYSTEMS CONTROL AND DISPLAY PANELS;
VERIFY ELECTRICAL POWER DISTRIBUTION TO PALLET;
VERIFY PALLET THERMAL CONTROL SUBSYSTEM; TURN
ON GUIDANCE, NAVIGATION AND CONTROL SUBSYSTEM

03:30 PERFORM VISUAL INSPECTION OF TELESCOPE AND ARRAYS

TELESCOPE DEPLOYMENT
03:40 RELEASE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
03:42 ROTATE DEPLOYMENT YOKE TO 90 DEGREE POSITION AND LOCK
03:57 PITCH TELESCOPE COARSE GIMBAL INTO INITIAL OPERATIONS

POSITION
04:12 RELEASE AZIMUTH TABLE LOCKS
04:14 OPEN TELESCOPE COVER
04:16 SETUP TELESCOPE AND INSTRUMENTS

MONITOR TEMPERATURE CONTROL SYSTEM UNTIL
STABILIZATION (APPROXIMATELY 3 ORBITS)

GAMMA-RAY SPECTROMETER AND LOW BACKGROUND
GAMMA-RAY DETECTOR DEPLOYMENT

04:50 RELEASE ARRAY GIMBAL MOUNT LAUNCH LOCKS
04:52 ROTATE ARRAY DEPLOYMENT YOKE TO 90-DEGREE

POSITION AND LOCK
05:07 PITCH ARRAY COARSE GIMBAL INTO INITIAL OPERATIONS

POSITION
05:22 RELEASE AZIMUTH TABLE LOCKS

8



ELAPSED TIME EVENT
(HR:MIN)

WIDE COVERAGE X-RAY DEPLOYMENT
0 5:24 RELEASE ARRAY MOUNT LAUNCH LOCKS
05:26 DEPLOY WIDE COVERAGE X-RAY ARRAYS
05:41 ROTATE WIDE COVERAGE X-RAY ARRAYS

HALVES INTO OPERATIONS POSITION

WIDE COVERAGE X-RAY ARRAY CHECKOUT
05:51 PERFORM SAFETY CHECK
05:53 TURN ON ELECTRICAL POWER
05:54 PERFORM ELECTRICAL CHECK
05:55 PERFORM BUILT-IN CALIBRATION

GAMMA-RAY SPECTROMETER AND LOW BACKGROUND
GAMMA-RAY DETECTOR CHECKOUT

06:05 PERFORM VISUAL SAFETY CHECK
06:15 TURN ON ELECTRICAL POWER
06:17 RELEASE IAUNCH RESTRAINTS AND DEPLOY DETECTOR PACKAGE
06:19 PERFORM FUNCTIONAL CHECK
06:29 PERFORM ELECTRONICS CALIBRATION
06:39 ESTABLISH ORIENTATION REFERENCES
06:44 INITIATE REPEATABLE ON-ORBIT OPERATIONS SEQUENCE

FOR ARRAYS

...THE WIDE COVERAGE X-RAY ARRAY AND THE GAMMA RAY SPECTROMETER AND LOW
BACKGROUND GAMMA RAY DETECTOR ARE OPERATED CONTINUOUSLY (EXCEPT FOR
PERIODS OF AUTOMATIC SHUTDOWN DURING PASSAGE THRU THE SOUTH ATLANTIC
ANOMALY) UNTIL TERMINATION OF EXPERIMENT OPERATIONS AT 161 HRS. 35 MIN...

IR TELESCOPE POST-TEMPERATURE STABILIZATION CHECKOUT
09:00 ALIGN TELESCOPE AND INSTRUMENT AXES WITH SORTIE CAN

AND PALLET GUIDANCE, NAVIGATION AND CONTROL SYSTEM
REFERENCES

09:30 CALIBRATE INSTRUMENT DETECTORS OF IR TELESCOPE
10:00 INITIATE REPEATABLE ON-ORBIT OPERATIONS SEQUENCE

FOR IR TELESCOPE

...TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE FOR IR TELESCOPE
REQUIRING 93.7 MINUTES PER CYCLE (54.7 MINUTES PER CYCLE OBSERVATION
TIME) PERFORM 97 TIMES, COMPLETING OPERATIONS AT 161 HRS. 35 MINUTES...

161:35 CLOSE COVERS ON TELESCOPE
161:37 SECURE TELESCOPE AZIMUTH TABLE LOCKS
161:39 TURN OFF ELECTRICAL POWER TO WIDE COVERAGE

X-RAY ARRAY
161:41 ROTATE WIDE COVERAGE X-RAY ARRAY HALVES INTO

STOWING POSITION
162:02 SECURE ARRAY MOUNT LOCKS
162:04 TURN OFF ARRAY CONTROLS AND DISPLAYS
162:06 RETRACT GAMMA-RAY ARRAY DETECTOR PACKAGE AND SECURE

LAUNCH RESTRAINTS
162:11 SWITCH ELECTRICAL POWER TO GAMMA-RAY ARRAY TO STANDBY
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ELAPSED TIME EVENT
(HR: MIN)

162:13 SECURE GAMMA-RAY ARRAYS AZIMUTH TABLE LOCKS
162:15 PITCH ARRAY COARSE GIMBAL INTO STOWING POSITION
162:45 RELEASE ARRAY DEPLOYMENT YOKE, ROTATE INTO STOWED

POSITION AND LOCK
163:15 SWITCH GAMMA-RAY ARRAYS CONTROLS AND DISPLAY PANELS

TO MONITOR CRYO SYSTEM ONLY
163:17 PITCH TELESCOPE COARSE GIMBAL INTO STOWED POSITION
163:47 RELEASE DEPLOYMENT YOKE LOCK AND ROTATE INTO STOWED

POSITION
164:17 SECURE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
164:19 SWITCH TELESCOPE THERMAL CONTROL SYSTEM TO STANDBY
164:21 TURN OFF MAIN POWER TO INSTRUMENT DETECTORS
164:23 TURN OFF CONTROLLS Af-, DIS.LAYiS PAm...

SECURE SORTIE LABN AND PALLET
164:25 TURN OFF SORTIE. LABI GUIDANCE, NAVIGATION AND

CONTROLS SUBSYSTEM; SWITCH PALLET TO STANDBY;
THERMAL CONTROL SUBSYSTEM; SWITCH ELECTRICAL
POWER DISTRIBUTION TO PALLET TO STANDBY

164:31 SCIENTIFIC CREW TRANSFER TO ORBITER STATIONS
164:41 CLOSE ACCESS HATCH TO SORTIE LABI
164:51 SWITCH SORTIE LABS SUBSYSTEMS TO STANDBY
164:57 CHECKOUT ORBITER, PREPARE FOR RETURN TO EARTH
165:57 INITIATE DEORBIT
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SOLAR PAYLOAD 1-2
FINAL MISSION ASSUMPTIONS

1. Sortie Lab is pressurized on ground and isolated from Shuttle

by crew access hatch.

2. Inclination 1.16 to 1.57 radians (66.5 to 90 degrees) depending on

time of year of mission.

3. Operations altitude variable with inclination from 592 km (320 n.mi.) at

1.16 radians to 463 km (250 n. mi.) at 1.57 radians.

4. Orbital passes within the crossrange capability of the orbiter vary

with altitude and inclination. At 463 km altitude and an inclination

of 1.57 radians, orbit 107 passes within the crossrange capability at

167 hr. 15 min. Deorbit is initiated 45 minutes prior to this pass at

166 hr. 30 min. elapsed time.

5. Typical repeatable Photoheliograph cycle is based upon manual control

of experiment equipment and sortie lab pallet subsystems to perform

pointing, alignment, and focusing functions. The times required and

shown assume improvement in these functions after the first time.

Target selection (shown as zero after the first time) is performed

during previous observation period.

6. Typical repeatable X-Ray Focusing Telescope cycle is based upon manual

control of experiment equipment and sortie lab pallet subsystems to

perform pointing, alignment, and focusing functions. The times required

and shown assume improvement in these functions after the first time.

Target selection (shown as zero after the first time) is performed

during previous observation period.
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SOLAR PAYLOAD 1-2
FINAL MISSION SEQUENCE AND FLIGHT PROFILE

ELAPSED TIME EVENT
(HR:MIN)

00:00 LIFTOFF
00:06.5 INSERT INTO 93 X 185 (50 R 100 NMI) ORBIT
00:50.1 TRANSFER TO 185 KM X FINAL ORBIT ALTITUDE OF

463 KM TO 592 KM (250 TO 320 NMI) AT FIRST
APOGEE

01:35.1 CIRCULARIZE AT FINAL ORBIT ALTITUDE AT FIRST
APOGEE. STABILIZE, CHECKOUT ORBITER SYSTEMS,
UPDATE EPHEMERIS, OPEN ORBITER CARGO BAY DOORS,
VERIFY READINESS TO PROCEED WITH EXPERIMENT
OPERATIONS

02:00 ORBITER COARSE-ATTITUDE ACQUISITION
02:30 REMOTE CHECKOUT OF SORTIE LAB SUBSYSTEMS

VERIFICATION: ELECTRICAL POWER; ENVIRONMENTAL
CONTROL/LIFE SUPPORT; CONTROL AND DISPLAY;
THERMAL CONTROL; COMMUNICATIONS/DATA MANAGEMENT;
GUIDANCE, NAVIGATION AND CONTROL

02:45 VERIFY SORTIE LAB HABITABILITY AND OPEN CREW
ACCESS HATCH

03:00 SORTIE LAB CHECKOUT BY SCIENTIFIC CREW
VERIFY EC/LS CAUTION AND WARNING SUBSYSTEM;
VERIFY COMMUNICATIONS/DATA MANAGEMENT SUBSYSTEM;
TURN ON SUBSYSTEMS CONTROL AND DISPLAY PANELS;
TURN ON ELECTRICAL POWER DISTRIBUTION TO PALLET
TURN ON PALLET THERMAL CONTROL SUBSYSTEM;
TURN ON GUIDANCE, NAVIGATION AND CONTROL SUBSYSTEM

03:30 PERFORM VISUAL INSPECTION OF TELESCOPES

PHOTOHELIOGRAPH CHECKOUT
03:40 TURN ON CONTROL AND DISPLAY PANEL, IMAGE CONTROL

SUBSYSTEM SERVOS, CAMERA AND FILTER CONTROL AND
THERMAL CONTROL ELECTRONICS

03:48 RELEASE LAUNCH LOCKS TO PROTECT PRIMARY AND SECONDARY
MIRROR ASSEMBLIES

03:50 TURN ON AND STABILIZATION OF TELESCOPE THERMAL
CONTROL FLUID SYSTEMS AND SPECTRAL FILTER THERMAL
CONTROL

PHOTOHELIOGRAPH
04:20 RELEASE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
04:22 ROTATE DEPLOYMENT YOKE TO 90 DEGREE POSITION AND LOCK
04:37 PITCH TELESCOPE COARSE GIMBAL INTO INITIAL OPERATIONS

POSITION
04:52 RELEASE AZIMUTH TABLE LOCKS
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ELAPSED TIME EVENT
(HR:MIN)

PHOTOHELIOGRAPH POST-DEPLOYMENT CHECKOUT
04:54 OPEN APERTURE DOOR
04:56 ENABLE ALIGNMENT AND FOCUS SERVOS AND ACHIEVE

THERMAL EQUILIBRIUM

XUV SPECTROHELIOGRAPH CHECKOUT
05:06 TURN ON CONTROL AND DISPIAYf PANEL, IMAGE CONTROL

SUBSYSTEM SERVOS, AND CAMERA CONTROL
05:16 ADJUST BAND SELECTION GRATING

X-RAY FOCUSING TELESCOPE CHECKOUT
05:31 TURN ON CONTROL AND DISPLAY PANELS, IMAGE ELECTRONICS,

CAMERA PROGRAMMING ELECTRONICS, FILTER WHEEL
CONTROL, THERMAL CONTROL ELECTRONICS, PHOTOMULTIPLIER
DETECTai ELECTKUNICS

05:41 TELESCOPE MAIN POWER SWITCHING, THERMAL CONTROL STATUS,
APERTURE DOOR POSITION CONTROL, FILTER WHEEL
POSITION SELECTION, DETECTOR SELECTION

05:59 IMAGING SYSTEM CAMERA FRAME RATE SELECTION, IMAGE
INTENSIFIER HIGH VOLTAGE CONTROL, GRATING POSITION,
INITIATE AND STOP MODE OPERATION

06:02 CRYSTAL SPECTROMETER SYSTEM SLIT SIZE CONTROL, SCAN
RANGE CONTROL, SCAN SEQUENCE CONTROL, CRYSTAL
POSITION CONTROL, CALIBRATE, INITIATE AND STOP
MODE OPERATION

06:10 PROPORTIONAL COUNTER HIGH VOLTAGE CONTROL, CALIBRATE,
PULSE HEIGHT ANALYZER RESOLUTION WIDTH, INITIATE
AND STOP MODE OPERATION

06:14 H-ALPHA SLIT CAMERA POWER ON, FILTER HEATER ON AND
STATUS, HIGH VOLTAGE CONTROL

06:17 PHOTOMULTIPLIER DETECTOR SYSTEM HIGH VOLTAGE POWER
CONTROL, DISCRIMINATOR LEVEL CONTROL, FLARE ALERT
DISPLAY

06:22 SOLAR X-RAY MONITOR TELESCOPE MAIN POWER CONTROL
HIGH VOLTAGE CONTROL, BRIGHTNESS CONTROL

06:24 H-ALPHA MONITOR TELESCOPE MAIN POWER CONTROL, HIGH
VOLTAGE CONTROL, FILTER HEATER CONTROL, THERMAL
STATUS

CORONAGRAPHS
06:27 TURN ON CONTROL AND DISPLAY PANEL, OCCULTING DISCS

CONTROL SUBSYSTEMS, CAMERA AND FILTER CONTROL,
AND THERMAL CONTROL ELECTRONICS

06:37 TURN ON AND STABILIZATION OF TELESCOPE THERMAL
CONTROL SYSTEMS
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ELAPSED TIME EVENT
(HR:MIN)

TELESCOPE DEPLOYMENT
07:07 RELEASE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
07:09 ROTATE DEPLOYMENT YOKE TO 90 DEGREE POSITION AND LOCK
07:24 PITCH TELESCOPE COARSE GIMBAL INTO INITIAL OPERATIONS

POSITION
07:39 RELEASE AZIMUTH TABLE LOCKS

XUV SPECTROHELIOGRAPH POST-DEPLOYMENT CHECKOUT
07:41 UNCOVER SUN SENSOR AND SPECTROHELIOGRAPH OPTICS
08:11 INITIAL CALIBRATION QUIET SUN PLAGES PHOTOS
08:26 INITIAL CALIBRATION QUIET SUN (INNER) CORONA
08:41 INITIAL CALIBRATION STANDARD LAMPS (INTERNAL)

CORONAGRAPHS POST-DEPLOYMENT CHECKOUT
09:11 OPEN COVERS AND LENS CAPS ON BOTH 1-6 SOLAR RADII

AND 5-30 SOLAR RADII CORONAGRAPHS, ERECT SUN SENSOR
09:22 ACQUIRE SUN IN TELESCOPE FOV
09:28 ENABLE ALIGNMENT SERVOS AND ACHIEVE THERMAL EQUILIBRIUM
09:40 ADJUST POSITIONS OF EXTERNAL OCCULTING DISCS TO OBTAIN

MAXIMUM SUPPRESSION OF DIFFRACTION EFFECTS FOR 1-6
SOLAR RADII

09:55 ADJUST POSITIONS OF EXTERNAL OCCULTING DISCS TO
OBTAIN MAXIMUM SUPPRESSION OF DIFFRACTION EFFECTS
FOR 5-30 SOLAR RADII CORONAGRAPH

10:10 ADJUST INTENSITY CALIBRATION WEDGES FOR 1-6 SOLAR
RADII CORONAGRAPH

10:22 ADJUST INTENSITY CALIBRATION WEDGES FOR 5-30 SOLAR
RADII CORONAGRAPH

10:32 INITIATE OBSERVATION PROGRAMS

.. PHOTOHELIOGRAPH
PERFORM TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE, 24 TIMES, PLUS

96 ADDITIONAL MINUTES, ACHIEVING 24X282=6768 PLUS 56=6824 MINUTES (113 HR 44 MIN)
TOTAL OPERATIONS TIME.

... X-RAY FOCUSING TELESCOPE
PERFORM TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE 40 TIMES, PLUS

200 ADDITIONAL MINUTES, ACHIEVING 40X162=6480 PLUS 142=6622 MINUTES (110 HR.
22 MIN) TOTAL OPERATIONS TIME.

... XUV SPECTROHELIOGRAPH AND CORONAGRAPHS
OBTAIN/EXPOSURE EVERY 3 MINUTES DURING QUIET SUN AND ACTIVE SUN MODES.

OBTAIN 2 EXPOSURES PER MINUTE DURING A FLARE. OPERATE CONTINUOUSLY UNTIL...

X-RAY FOCUSING TELESCOPE SHUTDOWN
161:32 TURN OFF IMAGE ELECTRONICS, CAMERA PROGRAMMING

ELECTRONICS, FILTER WHEEL CONTROL, THERMAL CONTROL
ELECTRONICS, PHOTOMULTIPLIER, DETECTOR ELECTRONICS
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EVENTELAPSED TIME
(HR:MIN)

XUV SPECTROHELIOGRAPH SHUTDOWN
COVER SUN SENSOR AND OPTICS
TURN OFF IMAGE CONTROL SUBSYSTEM SERVOS, AND CAMERA

CONTROL

CORONAGRAPHS SHUTDOWN
RETRACT SUN SENOR, CLOSE COVERS AND LENS CAPS
TURN OFF OCCULTING DISCS CONTROL SUBSYSTEM,

CAMERA AND FILTER CONTROL AND THERMAL CONTROL
ELECTRONICS

TELESCOPE RETRACT
SECURE AZIMUTH TABLE LOCKS
PITCH TELESCOPE COARSE GIMBAL INTO STOWED POSITION
RELEASE DEPLOYMENT YOKE LOCK AND ROTATE INTO

STOWED POSITION
SECURE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
TURN OFF CONTROL AND DISPLAY PANEL

PHOTOHELIOGRAPH SHUTDOWN AND RETRACT
CLOSE PHOTOHELIOGRAPH APERTURE DOOR
SECURE LAUNCH LOCKS TO PROTECT PHOTOGELIOGRAPH

PRIMARY AND SECONDARY MIRRORS ASSEMBLIES
SECURE TELESCOPE AZIMUTH TABLE LOCKS
PITCH TELESCOPE COARSE GIMBAL INTO STOWED

POSITION
RELEASE DEPLOYMENT YOKE LOCK AND ROTATE INTO

STOWED POSITION
SECURE TELESCOPE GIMBAL MOUNT LAUNCH LOCKS
TURN OFF PHOTOHELIOGRAPH THERMAL CONTROL FLUID

SYSTEMS, SPECTRAL FILTER THERMAL CONTROL,
AND CONTROLS AND DISPLAYS PANELS

SECURE SORTIE LAB, AND PALLET
TURN OFF SORTIE LAB GUIDANCE, NAVIGATION

AND CONTROL SUBSYSTEM; TURN OFF PALLET
THERMAL CONTROL SUBSYSTEM; TURN OFF ELECTRICAL
POWER DISTRIBUTION TO PALLET

SCIENTIFIC CREW TRANSFER TO ORBITER STATIONS
CLOSE ACCESS HATCH TO SORTIE LAB
SWITCH SORTIE LAB SUBSYSTEMS TO STANDBY
CHECKOUT ORBITER, PREPARE FOR RETURN TO EARTH
INITIATE DEORBIT
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162:05

162:11
162:21

162:27
162:33
163:03

163:33
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163:43
163:45

163:47
163:49

164:19

164:49
164:52

164:58

165:04
165:14
165:24
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TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE
PHIOTHELIOGRAPH

I ______ ___ __ __ _TII e IN MINUTESI

FUNCTION

A. SELECT TARGET

B. POINT TELESCOPE TO ACQUIRE
TARGET

C. ALIGN SECONDARY MIRROR RELATIVE
TO PRIMARY MIRROR TRANSVERSELY
AND IN TILT

D. ADJUST FOCUS, MOVING SECONDARY
MIRROR AND CELL ASSEMBLY AXIALLY
AIONG OPTICAL AXIS OF MIRROR

E. OBSERVE TARGET

OP. 1

3

3

6

12

18

OP. 2 OP. 3 OP. 4

0

3

1

3

18

OP. 5

0

3

1

3

18

OP. 6

0

3

1

3

18

OP. 7 TOTAL

3

12

9

21

72

F. SELECT TARGET 0 0 0 0 0 0

G. POINT TELESCOPE TO ACQUIRE TARGET 3 3 3 3 3 15

H. ALIGN (SAME AS C. ABOVE) 3 1 1 1 1 7

I. ADJUST FOCUS (SAME AS D. ABOVE) 3 3 3 3 3 15

J. OBSERVE TARGET 30 30 30 30 30 150

K. SELECT TARGET 0 0

L. POINT TELESCOPE TO ACQUIRE TARGET 3

M. ALIGN (SAME AS C. ABOVE) 1 1

N. ADJUST FOCUS (SAME AS D. ABOVE) 3 3

O. OBSERVE TARGET 60 60

TOTAL TIME FOR REPEATABLE SEQUENCE, MINUTES

REPEATABLE OPERATIONS TIME, MINUTES

371

282

MODE

[-1
'

w
H



TYPICAL REPEATABLE ON-ORBIT OPERATIONS SEQUENCE
X-RAY FOCUSING TELESCOPE

TOTAL TIME FOR REPEATABLE SEQUENCE, MINUTES

REPEATABLE OPERATIONS TIME

QUIET SUN IMAGING SYSTEM OPERATIONS

ACTIVE AND FLARE IMAGING SYSTEM OPERATIONS

18

TIME IN MINUTES

MODE FUNCTION OP 1 OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 TOTAL

A. Select Target 3 0 0 0 3

B. Point Telescope to Acquire 3 3 3 3 12
Target

C. Operate Imaging System 5 5 5 5 20

D. Index to Crystal Spectrometer 1 1 1 1 4cY
E. Operate Crystal Spectrometer 3 3 3 3 12

F. Select Target 0 0 0 0 0 0

G. Point Telescope to Acquire 3 3 3 3 3 15
Target

H. Operate Crystal Spectrometer 3 3 3 3 3 15

I. Index to Imaging System 1 1 1 1 1 5

M J. Operate Imaging System 5 5 5 5 5 25

K. Index Grating In 1 1 1 1 1 5

L. Operate Imaging System Plus 5 5 5 5 5 25
Grating

M. Index to Proportional Counter 1 1 1 1 1 5

N. Operate Proportional Counter 1 1 1 1 1 5

O. Index to Crystal Spectrometer 1 1 1 1 1 5

P. Identify Target 0 O

Q. Point Telescope to-Acquire 3 3
Target

R. Index to Imaging System and 1 1
Grating

S. Operate Imaging System and 60 60
Grating

220

162

20

110



TYPICAL REPEATABLE ON-ORBIT
OPERATIONS SEQUENCE

XUV SPECTROHELIOGRAPH AND
INNER AND OUTER CORONAGRAPHS

1 exposure every 3 minutes during quiet sun and active sun modes;

2 exposures per minute during a flare
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I. SUMMARY

The problem addressed in this tradeoff study was the selection of

preliminary designs for telescope functions that are performed repetitively

during on-orbit operations. These functions were identified as "critical"

in analyses of operations to determine methods of utilizing men effectively

in astronomy sortie missions.

Three methods of performing each critical function were compared with

respect to effect on mission success, cost, complexity, and flexibility.

The three methods are: manned, automatic, and fixed.

The design choice for all of these critical functions was determined

to be "manned" except for the observing operations of the XUV Spectrohelio-

graph and the Coronagraphs. These were determined to be "automatic" design

choice. A "fixed" design was not selected for any operation, and for many

was considered "not applicable" (N/A).

The results of this study depend heavily on the approach used in

considering cost. The program guideline of manning the telescopes by two

observers who are not part of the Shuttle flight crew; with a duty cycle

such that operations 24 hours per day are supported, provides the manned

method without a cost penalty that must be charged to the experiment function.

For the automatic method, the cost of providing the flight equipment penalizes

this alternative.
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III. STATEMENT OF PROBLEM

Effective utilization of man requires his application (1) to tasks

requiring the unique capabilities of human judgment and manual skills,

(2) to non-repetitive functions, and (3) to repeatable functions that are

best performed by the crew. The preliminary mission profiles showed that

the telescope operations (but not the SL Pallet activation, experiment

deployment, retraction, and deactivation operations) were repeatable and

of such a nature as to present a choice of method in accomplishing them.

The problem then, was to determine which of these repetitive operating

functions should be performed by the flight crew, which should be automated,

and which could be eliminated by fixing the hardware and making no adjustment

possible. Those repetitive operations that must be automated for technical

reasons, such as the stabilizing of telescope on targets, were not analyzed

in this problem.

IV. DESCRIPTION OF THE SELECTION SCHEME AND CRITERIA USED

The scheme to select one of the three operations methods (manned,

automated or fixed) involved estimating the effect of performing the

functions by each of the methods on mission success, cost, complexity, and

flexibility. The criteria were compared by estimating the best method for

each function and assigning a value of 10 to that parameter. The other

methods were then estimated at values from one to nine. Adding the scores

3



for each of the four comparison criteria resulted in a total score. The

highest total score was selected as the preliminary design choice. The

considerations made for each criterion were as follows:

1. Mission Success - Which method gives the greatest assurance of

acquiring the most scientific data? Will one method give more

time to observe and collect data? Does the method permit recovery

from malfunction? If the method precludes satisfying mission

objectives of a telescope, it was determined to be "not applicable"

and the choice was narrowed to the remaining two methods.

2. Cost - Which is the lowest cost method? Since experiment crewmen

are provided, no cost penalty was assessed for the manned method.

The factors estimated here were cost of the flight hardware

required for each method.

3. Complexity - Which method requires the most elaborate equipment

and operations? Must operations be performed only when in contact

with a ground station? The least complex, that is, the simplest

method was selected as best.

4. Flexibility - Which method can best respond to real-time (or

near-real-time) changes that become desirable? Which method

can best recover from malfunction or operate in an alternate

mode?

V. DESCRIPTION OF THE CANDIDATE SOLUTIONS

Three methods of performing the critical functions of experiment

operations were apparent candidates. They were manned, automatic, and

fixed.

1. Manned - This method uses the experiment flight crew to initiate,

control, adjust, stop, and monitor a function. A variety of

4



controls and displays may be required, but the essential

ingredient is that the flight crewman manually performs the

function and assesses its completion.

2. Automatic - This method used flight equipment to initiate,

control, adjust, stop, and monitor a function. A crewman may

be present to observe and assess the performance of the function,

but normally he takes no action.

3. Fixed - This method (which is not applicable to all functions)

eliminates the function by fixing the hardware making no control

or adjustment possible.

VI. EVALUATION OF THE CANDIDATES

The candidates were evaluated using a subjective scoring technique,

the best rated 10, the others proportionately less than 10, for each of

the four comparison criteria: Mission Success, Cost, Complexity, and

Flexibility. In performing the scoring, consideration was given to the

presently known hardware concepts for each telescope and for the operations

to be accomplished. The scoring included subjective engineering judgment

of the overall difficulty of the function and the sophistication of the

equipment as well as differences between the methods.

VII. SELECTION OF PREFERRED APPROACH

Tables 1 through 5 present the data that were generated in comparing

the candidate solutions for each of the functions of the Astronomy Sortie

Missions telescopes. Based on the total scores shown in these tables, a

preliminary design choice was selected for each function.

The comparisons were made by estimating the method that is best for

each of the four criteria (Mission Success, Cost, Complexity, and Flexibility)

and assigning a value of 10 to that method. The less desirable methods were

5



then assessed values lower than 10, the scores were added for each method,

and the highest total score chosen for preliminary design.

VIII. RECOMMENDATION

The "manned" method was chosen for each function of all of the

telescopes except "observing" for the XUV Spectroheliograph and the Corona-

graphs. These two functions were chosen to be "automatic".

IX. SUBSEQUENT EVALUATION

The technique used in selecting these choices was subjective and

was based on a concept of the hardware involved in performing the functions.

Some of the total scores were very nearly ties and the resulting design

choices should be reviewed as system analyses and definitions are developed.
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TABLE 1

CRITICAL ROLES AND FUNCTIONS

PHOTOHELIOGRAPH

COMPARISON CRITERIA

MISSION TOTAL PRELIMINARY
FUNCTION METHOD SUCCESS COST COMPLEXITY FLEXIBILITY SCORE RESULT

SELECT Manned 10 10 10 10 40 Design Choice

Automatic 8 1 1 8 18

Fixed N/A N/A N/A N/A N/A

POINT Manned 10 10 10 10 40 Design Choice

Automatic 8 1 4 9 22

Fixed N/A N/A N/A N/A N/A

ALIGN Manned 8 10 10 10 38 Design Choice

Automatic 10 6 3 4 23

Fixed 3 3 6 1 13

FOCUS Manned 8 10 10 10 . 38 Design Choice

Automatic 10 6 .3 4 23

Fixed 3 3 6 1 13

OBSERVE Manned

Automatic

Fixed

10

8

N/A

10

3

N/A

10

4

N/A

10

8

N/A

40

23

N/A IDesign Cbhoae



TABLE 2

CRITICAL ROLES AND FUNCTIONS

X-RAY TELESCOPE

COMPARISON CRITERIA

MISS ION TOTAL PRELIMINARY
FUNCTION METHOD SUCCESS COST COMPLEXITY FLETRXIB:CLITY SCORE RESULT

SELECT Manned 10 10 10 10 40 Design Choice

Automatic 8 1 1 8 18

Fixed N/A N/A N/A N/A N/A

POINT Manned 10 10 10 10 40 Design Choice

Automatic 8 1 4 9 22

Fixed N/A N/A N/A N/A

INDEX Manned 10 10 10 10 40 Design Choice

Automatic 9 7 7 9 32

Fixed N/A N/A N/A N/A N/A

OBSERVE Manned 10 10 10 10 40 Design Choice

Automatic 9 9 9 9 36

Fixed N/A N/A N/A N/A N/A
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...... '



TABLE 3

CRITICAL ROLES AND FUNCTIONS

XUV SPECTROHELIOGRAPH AND CORONAGRAPHS

COMPARISON CRITERIA

MISSION TOTAL PRELIMINARY
FUNCTION METHOD SUCCESS COST COMPLEXITY FLEXIBILITY SCORE RESULT

SELECT Manned 9 10 10 10 39 Design Choice
MODE

Automatic 10 7 7 9 33

Fixed N/A N/A N/A N/A N/A

OBSERVE Manned 5 10 10 10 35

Automatic 10 9 . 9 9 37 Design Choice

Fixed N/A N/A N/A N/A N/A



TABLE 4

CRITICAL ROLES AND FUNCTIONS

STRATOSCOPE III

COMPARISON CRITERIA

MISSION TOTAL PRELIMINARY
FUNCTION METHO) SUCCESS COST COMPLEXITY FLEXIBILITY SCORE RESULT

POINT Manned 9 10 10 10 39 Design Choice

Automatic 10 6 6 6 28

Fixed N/A N/A N/A N/A N/A

SELECT Manned 10 10 10 10 40 Design Choice

FILTER Automatic 8 9 9 8 34
OR
GRATING Fixed N/A N/A N/A N/A N/A

CALIBRATE Manned 9 8 8 10 35 Design Choice

Automatic 10 4 4 8 26

Fixed 6 10 10 4 30

OBSERVE Manned 10 10 10 10 40 Design Choice

Automatic 7 8 8 6 29

Fixed N/A N/A N/A N/A N/A

ROTATE Manned 9 10 10 10 39 Design Choice

MIRROR Automatic 10 9 9 9 37

Fixed N/A N/A N/A N/A N/A



TABLE 5

CRITICAL ROLES AND FUNCTIONS

:1R TELESCOPE

COARISON CRITERIA

MISSION TOTAL PRELIMINARY
FUNCTION METHOD SUCCESS COST COMPI.XITY FLEXIBILITY SCORE RESULT

PERIODIC Manned 8 10 10 10 38 Design Choice
CHECKOUT

C T Automatic 10 9 9 9 37

Fixed N/A N/A N/A N/A N/A

PERIODIC Manned 8 9 9 10 36 Design Choice

CALIBRATE Automatic 10 8 8 9 35

Fixed 4 10 10 4 28

ACQUIRE Manned 9 10 10 10 39 Design Choice

GUIDE Automatic 10 8 8 9 35
STAR

Fixed N/A N/A N/A N/A N/A

LOCATE Manned 10 10 10 10 40 Design Choice
OBJECTIVE

Automatic 8 7 1 7 7 29

Fixed N/A N/A N/A N/A N/A

OBSERVE Manned 9 10 10 10 39 Design Choice

Automatic 10 9 , 9 8 36

Fixed N/A N/A N/A N/A N/A

ROTATE Manned 9 10 10 10 39 Design ChoZic

MIRROR Automatic 10 9 9 9 37

Fixed N/A N/A N/A N/A N/A
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INTRODUCTION

Preliminary Failure Mode and Effects Analyses (FMEA) were performed

on the Astronomy Sortie Mission support subsystems, astronomy experiment

instruments, and arrays to identify the mission critical single failure

points and provide a basis for the determination of redundancy and inflight

maintenance requirements.

The FMEA's included in this appendix were performed to the component/

assembly level based on the available conceptual designs for the baseline

ASM subsystems and experiments. Each failure mode identified was classified

with respect to safety/mission criticality using the following categories;

Category I - Failure which results in a potential crew safety hazard.

Category II - Failure which results in total loss of experiment

capability or inability to meet primary mission objectives

Category III - Failure which results in partial loss of primary objectives

or loss of all secondary objectives.

Category IV - Failure which results in only partial secondary data loss

or has no significant effect.

Where possible, the required inflight and post mission corrective actions

were identified.
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ASTRCIQNR SORTIE HISSION
FAI/ME IDE AND FFECTS ANALYSIS

IFFECT OF FAIIJIRE CORRECTIVE ACTION 

1S111 CIL CAUSE cV I EERIME T/ CNI: JAL wnnI POST RECOEATIS/
SDBSTSM FAII MM FAILURE CREW llSSICN CATEGCRY IASnI MISSION I REnMuS

Los of anS one
detector module

Lo]s of electron-
itea for y one
detector

Failure of the
module or *nY
of its parts

Failure of a
portion of elec.
package aocie-
ted with ms
detector ml-e

None

None

Experienat:
Loas of part of
experiment data
Mission:
Degraded

Ezoeriant:
Loss of part of
experimnt
package
Hisaion:
Degraded
mission

III

III

None Repair or Replace

Repair or Replace

Since there are four
identical detector
modules loss of any
one will cause loss
of all date

Loss of one portion
does not cause loss
of all data

3

Low background
w'--ay.

Detector
r

Detector
odule (4)

Electronica
Paclage

I

I



ASTRONOMY SORTIE MISSION
FAILURE MODE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRICTNE ACTION

FAILURE
INSTRUMENT OR CAUSE OF C REXPERIMENT/ CRITICALITY DURPO IN ST RECOMMENDATIONS/
SUBSYSTEM FAILURE MODE FAIRE CREW MISSION CATEGORY ISSION MISSION REMARKS-~~~~~~~ ~~~~~~~~~~~~~ R EMA RKS

Loss of one of
two continuum
radiation modules

Loss of one of
seven line
intensity module

Structural
mounting frame
failure

Central Data
Processor
failure

Sectored
proportional
counter failure
or loss of
associated
electronics

Sectored
proportional
counter failure
or loss of
associated elec-
tronics

Jamned launch
restraints or
failure to
elevate support-
ing gimbals

Loss of saroT
units, pulse
height analyzers,
readout or con-
trol circuits

No effect

No effect

None

Loss of real
time monitoring
of the experi-
ments operation

Experiment:
Loss of tempera-
ture determina-
tion for the X-
ray source at
one energy level.
Mission:
Minor mission
degradation.

Experiment:
Loss of
polarization
measuremnt
of X-ray flux
generation for
one element
Mission:
Minor mission
degradation

Experiment:
Loss of ability
to decouple
drift between
experiment arias
and shuttle
orientation
Mission:
Degraded mission

Experiment:
Loss of objective
of this experi-
ment. Loss of
stored data re-
sults in experi-
ment degradation
Mission:
Degraded mission

III

III

III

III

None

None

Viewing of
specific X-rly
sources will
require re-
orientation
of the Shuttle

None

Repair or replace
defective energy
level module

Repair or replace
defective line
intensity module

Repair or replace
defective struc-
tural mounting
component

Repair or replace
defective data
processor unit

Loss of one energy level
X-ray source temperature
determining module

N_Loss of polarization
measurement for one
element of X-ray flux
generation

SPP
Loss of all data per-
taining to meaaurement
of X-ray intensity and
polarieation of a
selected source

4

Narrow-Band
Spectrometer/
Polarineter

Narrow-Band
Detectors
(Nine)



ASTRONOMY SORTIE MISSIO(
FAILURE MDE AND EFFECS ANALYSEIS
raw= es - _~ m-4

EFFECT (OF FAILtRE CORRECTIVE ACTION

FAIlSI I
uIsn Ime OR aCAUSE U EXEINT CRxITIA c Ic. oTYm I DURING POST C ReCOINDATIONS/
SUBSl TM I PAILm~ M FAILUM _ CREW I MISSION CEGORY MlSSION I SSION REMTS

Gm-ray
Spectrometer

Crystal Detectors
(One of Four)

ScintiLlation
Guard Shield

Cryogenic
Refrigerator

Electronics
Package

Loss of gmms ray
photon detection
for the 0.06 to 10

aeV energy range

Fails to limit
field of reviev
of instrNumnt

Loss of crystal
detector tempera-
tore control

Loss of output
data

Deployment
mechanism
failure

Sodium-doped
iodide flakes
off crystals

bthaniclte
valve failure

Electrical
circuit failure

No effect

No effect

None

None

Experiment:
Loss of extended
range of meuure-
ments into the
higher energy
level
Mission:
Minor mission
degradation

Experiment:
Loss of collism-
tion and rejection
through the de-
fined aperture
MisSion:
Minor degradation

Experiment:
Temperature rise
above 200K
deteriorates
detector charac-
teriatics
Miss ion:
Minor degradation

Experiment:
Loss of basic
information rola-
tive to scientific
objective of this
experiment
Mission:
Minor degradation

III

III

III

III

None

None

None

Repair or replace
defective compon-
ents

Loss of X-ray and Ganme-
ray line emissions in
the 0.06 to 10 MeV
energy level

Repair or replace 
sodiu-doped
iodide coatings

Repair or replace
defective compon-
ents

Repair or replace
defective electror
ics

Loss of X-ray and Gamma-
ray line emissions in
the 0.06 to 10 MeV
energy level
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ASTRONOMY SORTIE MISSION
FAILURE MODE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRECTIVE ACTION

FAILURE

INSTRUMENT OR CAUSE OF EXPEREIHT/ CRITICALITY DURING POST RCOEMATIONS/
SUBSYSTEM FAILURE MODE FAILURE CRE4 MISSION CATEGORY MISSION MISSION REMARKS

I~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~ %K

Loss of one or more
Detector Units

Loss of all data
output of the
experiment.

Loss of any
one module.

Loss of pro-
cessing of
data signals.

Failure of one
(or more) of
the detector
modules

Failure of
circuits or
any of their
parts.

Failure of
any part of
detector.

Failure of
circuits or
any of their
parts.

None

None

None

None

Experiment:
Degradation
of ability to
detect and
locate tran-
sient X-ray
emissions.
Mission:
Degradation
of mission.

Experiment:
Loss of ran-
dom tran-
6ient emis-
sion detec-
tion.
Mission:
Degradation
of mission.

Experiment:
Partial loss
of ability
co measure
properties of
X-Ray sources.
Mission:
Degradation
of mission.

Experiment:
Loss of ex-
periment output
data.
Mission:
Degradation
of mission.

III

III

III

III

None

None

None

None

Repair or
Replace

Repair or
Replace

Replace or
repair

Replace or
repair

There are "many" detector
modules on the dome. Loss
of one (or more) detectors
degrades data but does not
cause loss of all data.

SFP
Loss of all data causes loss
of experiment.

Since there are multiple modules
loss of any one will not cause
loss of all data.

SFP
Loss of signal processing causes
loss of all data.

6

WIDE COVERAGE
X-RAY DETECTOR

X-Rar Dete tor
Units and
Dome Structure

Central Data
Processor

LARGE MODULA-
TION COLLIMATOR

Modulation
Collimator
Modules

Central Data
Processor

I I i _ . _I i



ASTRONOMY SORTIE MISSION
FAILURE MODE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRECTIVE ACTION

FAILURE
INSIIUHImNTi OR CAUSE OF EXPERIE/ C PITICALITY DURI POST RECOCMENDATIONS/
SUBSYSI~s4 FAILURE MQ)E FAILURE CREJ MISSION CATEWORY SS SION I REIARS

IrISSION:D PLASNER 
~IARF, S

Repair or re-
place defective
components

Repair or re-

it or re-
place defective

couponents.

Repair or re-
place defective

compoaents.

ca ponexant

Partial loss of high reso-
lution data for both point
and extended sources.

Partial loss of high reso-
lution data for both point
and extended sources.

Partial loss of high reso-
lution data for both point
and extended sources.

COLLInA7 PLANE
CZYSTAL SPECTRO-

Collimator
(one of three)

Crystal
Assembly
(one of three)

Proportional
Counter
(one of three)

Pulse Height
Analyzer
(one of three)

Fails to limit
field of view.

Fails to dif-
fract x-rays
to proportional
counter and
pulse height
analyzer

Fails to detect
intensity of
diffracted
x-rays.

Los of output

Improper align-
ment.

Cracked cry-
stals

Loss of inert
gs.

Failure of
electrical
parts.

None

None

None

None

III

III

III

Ill

None

None

None

None

Experiment:
Spectral in-
formation of
x-ray sources
will not be
limited to the
specified
bands.
Mission:
Minor mis-
sion degra-
dation.

Experiment:
Loss of one-
third of the
energy range
coverage and
spectral re-
solution.
Mission:
Minor mis-
sion degra-
dation.

Experiment
Loss of one-
third of the
energy range
coverge aend
spectral
resolution.
Misaion:
Minor de-
gradation.

I

a

S
f
X

I
a
b

4

1
11

4

i

i



ASTRONONY SORTIE MISSION
FAILURE MODE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRECTIVE ACTION

FAILURE

NSTRU1ENIT OR CAUSE OF EXPERIMENT/ CRIITICALITY DURING POST RECQOMENDATIONS/

SUBSYSTR O FAILURE MODE FAILUSRE c MISSION CATICORY MISSION MI SSION IMARKS
- I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~AK

Loss of associated
drive mechanism to
fine point the
instrument.

No output to
real time data
management or
tape recorders.

Loss of any one
detector causes
partial loss
of ability to
detect iacident
x-ray energy.

Loss of pulse
height analy-
sis.

Experiment:
Loss of all
data for energy
range and
spectral reso-
lution.
Mission:
Degraded
mission.

Experiment:
Loss of ex-
pected output
of experi-
ment.
Hission:
Degraded
mission.

Experieent:
Loss of or
inaccurate
experiment
output.

III

III

III

None

None

None

None

Repair or re-
place defective
components.

Repair or re-
place defective
components.

Replace or
repair

Replace or
repair

SFP
Loas of all experiment data
related to x-ray sourcea
in the 0.5 to 10 KeV energy
range.

Since there are six detector
modulea loss any one will not
cause loss of all data.

SFP
Lose of pulse height analysis
causes loss of output of all
detectors.

8

COLLaTED PLANE
CRYSTAL SPECTRO-
HETER
(Continued)

Detector Drive
Mechanism

Central Data
Processor
and Control
Electronics

LARGE AREA
X-RAY DETECTOR

Detector
Modules (6)

Centrrl Data
Processor

Failure of mecha-
nical or elec-
trical parts.

Failure of any
associated
electrical or
mechanical
parts.

Failure of any
part of detec-
tor.

Failure of
circuits or
any of their
parts.

None

None

None

None



ASTRONI SOTIE '4ISSION
FAILUE MODE AID EFFECTS ANALYSIS

EFFECT OF FAIURE C(RRICTIVE ACTION

FAILURE
IzSTlmiNT OR CAUSE OF RJPU1DMNT/ CRITICALITY Dm TIA: POST REA ATIONS/
SUBSYST!12 FAIIREt HMODE ] tLWHIX CEI MISSfION CATO MISY HSION :a&IOH RlEARKS

HOTOBELIOGRAPH a) Failure of
H- Caera

b) Failure of
Broad Band
Camera

c) Failure of
Spectrograph

d) riary
Hirror Failure

e) Secondary
Mirror Failure

f) Loss of
laternal Align-
ment of Man
Opticz

1. Failure of
shutter
2. Failure of
torque motors
or drive
3. Failure of
coacrols
4. Failure of
filter

1. Failure of
shucter
2. Failure of
torque motors
or drive
3. Failure of
controls
4. Failure of
filter

1. Camera
failure
2. Hisalign-
ment

1. Varped or
distorted
2. Deteriora-
tion of coat-

1. Deteriora-
tion of coat-
ing.

1. Failure of
motor. align,
electr., de-
tector, or
laser
2. Fail of IDT
or filzer

None

None

None

None

None

Partial Data

Paetial Data
Loss

Partial Data
Loss

Loss of part
of A tronomy
Data

Loas of part
of Astronoey
Data

Loss of part
of Astrorm
Data

III

III

III

III

III

III

bno

None

None

None

None

Non

Repair or re-
place as re-
quired.

Repair or re-
place ae re-
quired.

Repair or re-
place as re-
quired.

Repair or re-
place as re-
quired.

Repair or re
place au re-
quired.

Repair or re-
place as re-
qu red.

Replace cOmra after
4 flights.

Replace cmara after
4 flights.

Replace camra after
4 flighte.



ASTIIONOY SORTIEg ISSION
FAILURE MODE ANDI) EFFECTS ANLYSIS

EFFCT OF FAILURE CORRTrIVI AM lON

FAILURE 
INSTRIUENT OR CAUSE OF EXPERIMENT/ CRITICALITY DURING POST RECOM1ENDATIONS/
VUBSYSTlK 1AILRE MHODE fAI LURA CREW MSSION CATEGORY MISSION MISSION REMARXS

POTOELOGIAPH g) Loss of Focus 1. Failure of None Loss of Part III Nol-e Repair or re-
(Continued) motor, align, of Astronomy place as re-

control, elec- Data quired.
tronies.
2. Failure of
IDT or filter.

h) Failure of 1. Failure of None Loss of Astro- III None Repair or re-
the folding motor, con- nomy Data place as re-
mirror. trol, fine quired.

pointing
electronics.
2. Failure of
IDT or filter.

i) Failure of 1. Structural ',on= Loss of All III None Repair or re-
aperture door failure. Astronomy place as re-
to open. 2. Failure of Data. quired.

motor, control,
or mechanism.

j) Loss of 1. Failure vf None Degraded III None Repair or re-
Display Vidicon. Operation place as re-

quired.

k) .ailure of 1. Part None Partial III None Repair or re-
Wave Length Failure Data Loss place as re-
Control quired.

DIV S PECTO-
HELOGR AP

a) Failure of
Aprture Door
to open.

b) Failure
of Aperture
Door to Close

1. Failure of
Actuator, 0otos
or Control
2. Structural
Failure

1. Failure of
ctuator, Notle

or Control
2. Structural
*ailure

None

None

Loss of
XlV Data

Degraded Opera-
tion due to
Thermal Un-
balance.

III

None Repair or re-
place as re-
quired.

nepair or re-
place as re-
quired.
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ASTRONOCY SORTIE MISSION
FAILUREB ODB AND EFFECTS ANALYSIS

IFEPCT OF FAILURE CORRECTIVE ACTION

FAILURE
Q CICM Orf EYRSIDINT/ CRIICALITY DRIlI; POST RSCCMHENDAIONS/

SMiU I 1ADB E m FaJ CRENIW ISSI ON OATEGORY I aSS .. MISSION R EIARXS

JW IUD- d) Failure of 1. Failure of Non. Loss of XV III None repair or re-
IIUIIVAPH ) Conca CrGrating motor, drive Data place as re-
(Contiiod) mechanism, or quired.

conttrel
2. Structural
Failure.

d) Failure of 1 Failure of NOne Loss of XIV III .one Repair or re- Replace .aera afLer
Film Caome shutter. shutter Data plac., as re- 4 flights.

control, drive quired.
mechanist or
motor.
2. Failure of
film transport
mechaniaa or
drive motor.

i) Failure of 1. Structural Noae Degraded III Norle epair or r -
Filter Failure Operation plc. as re-

due to los- qir'ed.
of Ther,.al
Protectio-.

f)*ailur. of 1. Structural None Degraded III Lo;e epair or re-
Rejection Failure or Operation due plac. as re-
Mirrors isaaligent to Lo.s oi qui ed.

Therwal Pro-
tection

g) Failure of 1. Vidicon None Degraded _Il o.ore ,.,pair or re-
Aspect Sensor Failure Operationl pluce as re-

2. Electronic quired.
Part Failure
3. techanical
Failure

Large Aperture
Grazing In-
cidence Tele-
scope

No anticipated
failure modes.

N/A N/A .h/A /A
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ASTROIW SmTII NIS[ION
AITIU MMlDI AND ERFCTS AA.LYXSI

EFFECT OF FAIURE COII CTIVE ACTION

INSmm1ff ca R USE OR Ku g/ C oTr I *TT 1Y DURING I ITCNS
sU STs SA.ILURE mCsE FAILUREs DREa nISXN I CASRBY MISSONI MISSION IMIAK

Binds or freezes
in either of two
possible positions.

Binds or freezes
in one of six
possible posi-
tions.

Binds or freezes
in one of three
possible posi-
tions.

Fails to convert
X-Ray inage to
optical image.

Mechanical
Malfunction

Mechanical
Malfunctiol

Mechanical
Malfunction

Failure of
any part of
converter.

None

None

None

None

Rxperiment:
Loss of part
of the func-
tion of the
experiment.
Mission:
Degraded
Mission

ExDeriment:
Loss of
selection of
data to be
observed.
Mission:
Degraded
Mission

Experiment:
Loss of
selection of
data to be
observed.
Mission:
Degraded
Mission

Experiment:
Loss of
ability to
convert
X-Ray images.
Mission:
Degraded
Mission

III

III

III

III

None

None

None

None

Repair

Repair

Repair

Ieplace or
repair

Only a portion of the
data that might be de-
sired could be obtained.

Only a portion of the data
that might be desired
could be obtained.

Only a portion of the date
that sight be desired could
be obtained.

Partial loss of experiment
data.

12

X-RAY FOCUSING
TELESCOPE
(Continad)

X-Ray
Transmission
Grating

Filter
Wheel

Turret

Imsge
Intensifier
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ASTRONOMY SORTIE MISbluN
FAILURE MODE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRECTIVE ACTION
FAILURE

INSTLUNENT OR CAUSE OF EXPERIMENT / CRITICALITY DURING POST RECOM END ATIONS/
SUEBYS T1 FAILURE OD FAILURE CR I MISSION CATEGORY MISSION I MISSION R EMAKRS

I-RAY FOCUSING
TiLunCOCI (Cont inued)

roportti .al
Counter

Proportional
Counter
Electronics

a- llit

Photomultiplier
Detector
Solar Activity
Monitor

Photocultiplier
Detector
Electronics

Boss of output

Loss of output

Loss of output

Loas of output

Loes of output

Failure of the
unit or any of
its parts.

Failure of the
unit or pny of
its parts.

Failure of
unit or any
its part.

the
of

Failure of the
unit or any of
its parts.

Failure of the
unit or any of
its parts.

None

None

None

None

None

Experiment:
Loss of one
portion of
the experiment.
Mission:
Degraded
Mission

Experiment:
Loss of one
portion of
the experiment.
Mission:
Degraded
Mission

Experiment:
Loss of
telescope
pointing
capability.
Mission:
Degraded
Mission

Experiment:
Loss of
camera ex-
posure times
and frame
rates
Mission:
Degraded
Eission

Experimnt:
Loss of
camira ex-
posure time
and frams
rates
Mission:
Degraded
Mission

III

III

III

:II

III

None

None

.lone

ione

None

Replace or
r epair

Replace or
repair

Replace or
repair

-,pair or
replace

k-ppir or
replace

Loss of a portion of
experiment data.

Loss of a portion of
experiment data.

Loss of quality of
experiment da.a.

o eplace camera after
4 flights.

-ass of quality of ex-
periment da:a.

Loss of qu litv of
experiment dut6

14



ASTRONOHY SORTIE MHSSION

FAILLRE IDE AND EFFECTS ANALYSIS

mEFcT OF FPAIUIRE CORRECTIVE ACT1N

_ ~~~~~FAILURE
lNSTRUMENT 0O CAUSE OF E mrFxim/ CR'TICALTY DRING POST RE C(BENDATIONiS/

SUBSYSTEM FAnL"E ~DE FAILgRE U' CREW IISS ION CATEGORY XasSION nSN ION REARRS

1. Mirror
varped or
misaligned
2. Deteriora-
tion of coating

1. misaligned
2. Deteriora-
tion of coating

1. Los pof
coolant

I. Failure of
actuator. aotor,
control
2. Strctnral
failt

1 hrt fdiIlo
2. Icbanical
failure

1. Is hanical
failure

1. Loas of
coolant

1. iielgo-

1. Failure of
imaging tube
2. Failure of
lectronic

1. Star tracla
failure

R TEILESCOPE a) Failure of
prioary mirror

b) Failure of
secondary mirror

c) Failure of
liquid neon
cooling *yatem

d) Failure of
aperture door
to open

*) Pilour of
the interfero-
ater

f) Failure of
the detector
array

g) Failure of
liquid helinm
cooling system

h) Failre of
the optical
telescope

i) Failure of
irmaging ystem

j) Failure of
optical reference

None

Nono

None

Nonl

None

Nonea

None

Loas of altrono~
data

deta

Phrtial los of
data

Lou of all
astronomy data

Partial loe of
data

Losa of pointin
and etabili--rtio

Losa of visible
light data

LDos of pointing
ad stabilisatio

II

II

III

II

II

III

III

II

II

None

NoneNona

None

None

Non

None

None

None

ons

Non

Repair or
replace a
required

Repair or
replace as
required

Repair or
replace as
required

Rapair or
replace a
required

Repair or
replac as
required

Repair or
replace as

r plca*

required

Repair or

Repair or

rplace a
required

Repair or

replace a
required

required

Critical SPI

Critical SYP

Critical SFP

Critical BSP

'Critical SFP

15



ASTRONOMY SORTIE MISSION

FAILURE lO)DE AND EFFECTS ANALYSIS

EFFECT OF FAILURE CORRiCTIVE AC.lOh

FAILURE

IimUKENT OR CAUSE OF EPERIMENT/ CRITICALITY DURING POST R ECC :iIETL.. TIONS/

I2lyl'7 FAILUIRE HODE FAILURE MI ESSION CATEGORY MISSION MISSIC: RE IARKS

CaOREl1 (IC) a) Failure of occult- 1. Mechanical None Loss of IC Data III None Repair or re-
ing disk assembly failure result- place as re-

ing in misalign- quired.
mert.
2. Failure of
drive mecha-
nism or motor.

b) Failure of Op- 1. iesalign- None Ioss or degrade- III None Repair or re-
tical Aasy. ment tion of IC Data place as re-

quired.

c) Failure of 1. Failure of Nor- Loss of IC Data III hone Repair or re- Camera life limitation
Film Camra Bbsitlr. control, place as re- 50,000 cycles - Replace

dttve mechanism quired. every 4 flights.
or motor.
2. Failure of
film transpart
mechanism or
drive motor.

d) Failure of 1. Vidicon None Degraded operation III None Repair or re-

Aspect Sensor failure place as re-
2. Elect. part quired.
failure
3. Mechanical
failure

a) Failure of 1. Misalignment None Degraded operation III None Repair or re-

lhermel Mirrors place as re-
quired.

(OC) (Sas as a) thru Same as above None Same as above for III None Repair or re-
e) above) for Fail nodea Failure Lodes a) place as re-

*) thru e) thru e) quired.

OFZWAL C M ae) Mlislignmeant Structural None Loss of IC or OC III None Repair or re-
Failure data or both place as re-

quired.

ione , artlal 1008 01 ep e le
ISmDC III a) Failure of

F-12 Camers
1. Launch &
Ascent Environ-
ment
2. Wearout

Partial loss of
IXp. Data

eplace a. led I
item

16
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ASTRONOMY SORTIE MISSION

FAILURE NODE AND EFFECTS ANALYSIS

EFFECT OF FPAILURE CORRECTIVE ACTION

sUiIr OR j C USE OF X ERIMENT/ CRITICALIT 1 DURING POST
1!F34 11,71"YAILIIRB r ClgS lIRgMSION CATEGORY I MISSION tISSION REMARS

L. , . _. .. - , .. I...... ....
SThAOCO E nIII b) Failre of 1. Iaunch & None Partial loen of III None Replace Failed
(cow) F-96 Camara Ascent Environ- Rep. Date item

_nt
2. Wearout

c) Failure of 1. Camara Failure Non Partial lose of III None Replace failed
s Speed, Ei due to Launch Env ERp Data item

Reol Spectro- or Wearout
graph 2. Misaliegomt of

Mirrore, Collimater,
grating, or ntrs
due to Launch gEn
or Space Thermel
Env.

d) Failure of 1. Camara failure s Partial losa of
Righ Speed, LO due to Launch Env Rxp Data III None Replace failed
Reaol Spectro- or WeVrout. item
graph 2. Miseligament

of mirroro, Colli-
mater, grating, or
Crau due to
Laach Snv. or Space
Thermal Ena.

*) Primay 1. Warpi due to Noa Poeoible losse I Adjut Repair as Critical SFP
Mirror Di- thermal eunlient of all force Required
torted or 2. Support aerue- Astronomy Data actuators
Mialignd toure alint io on mirror,

adjust traper-
atureo, or
adjust tilt,
focue, or da-
center to
compnlsate

f) lPrmary . eterials Out- Rne PPoible lo s II None Clean Mirror Critical SFP
Miror Con- galng of all
t _ld eated 2. Spaceraft As ronomy Data

Propulsion

g) Secondary 1. Warping due None Posible lose II Adjust Tilt, Repair as Critical SPF
Mirror dis- to Thermal env. of all focus, decan- required
torted or 2. Support Astronoep data tering to
Jdaaligned etructore eis- coepeneate

alignmnt

17
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zonin OR
Smm;

SATIOSC II I
(CaD)

FAfLRNE IN

h) Secondary
mirror coneti-
sated

i) Failur of
beam direeting
mchauiam

J) Failure of
aperture door to
open

k) Failure of
aperture door to
close

1) Failure of
light sede to
extemd

a) Failure of
ligSht ehde to
cloee

COSE OFP
FAILU1

1. Ntrariale
outgaering
2. Seecraft
propulaion

1. Launch end
acent environ-
mnt or space
thtarel env.

1. sealign-
mint or
binding
2. Failure of
drive motor or
actuator

1. Hisaligo-
met or
binding
2. Failure of
drive otor or
octLator

1. Hisalign-
ment or

binding
2. Drive otor
or ecani
failure

1. NIealign-
ant or binding
2. Drie rotor
or _dchaniu
fei lure

EFFECT O( FAILDRE 

EXPERIMENT/
NISS ION

Posaible loe of
all *atronomy
data

Possible lose of
all astronomy
data

Lose of all
astronoy data

None

Loas of or
degradation of
aetronmW data

Inability to
return telescope
into bay for
return to earth

DURING
!ISSION

None

None

None

Program operation
to prevent point-
ing at bright
lights

None

Jettison light
Ibade or total
te lecope

REMAU IS

Critical SFP

Critical FFP

Critical SFP

Critical SFP

Critical SFP

18

CREW

None

None

None

None

FAIIURE
CRITICALITY
CATEGORY

II

II

II

III

II

II

POST
MISSION'

Clean mirror

Repair as
required

Repair as
required

Repair as
required

Repair as
required

Repair as
required

CORRECTIVE ACTION



ASTREONOY SORTIE HISSION

FAILURE MODE AND 1FFECTS ANALYSIS

ASK Gi&C SUBSYSTEM

EFFECT OF FAILURE CORRECTIVE ACTION

FALUREB

INSTIIIENT OR CAUSE OF EIPERIMINT/ CRITICALITY DURING POST RECOtNATtIS/
SUBSYSTEM FAILURE MiDE FAILURE CREW MISSION CATE GORY MISSION iSSIW RT IR5

ATM DGS -
functions are to
stabilize the
Shuttle Orbiter in
an X-POP (X-axis
perpendicular to
the orbital plane)
attitude, and to
provide ability to
maneuver the Shuttle
Orbiter

ASH PALET RATE
GYRO PACKAU -
functions are to
measure SO body
rates, inputted
to CHG systeM to
stabilize SO,
inputted to aS et
of strapdown
equation for
computing SO
attitude.

ASK TELESCOPE RATE
GYRO PACUA -
functions are to
eaasure ASH tele-

scope rotational
rates for input to
telescope fine
stabilization sye-
tem for stability
requiresonts, and
for input to a set
of strapdoen squa-
tions of computation
of telescope
attitude

Loss of ability to
stabilize the SO
in X-POP attitude.

Loss of ability to
maneuver the SO

Loss of SO body
rates input to
C system

Loss of rate input
for computation
of SO attitude

Loss of telescope
tability

Loss of telescepe
pointing capability

Failure of the None
circuitry or its
associated parts

None

Failure would
result in loss
of mis ion

Failure would
result in loss
of miasion

Failure would
result in loss
of telescope
experimant

III

II

II

None - No EVA
during mission

None - No EVA
during mission

None - No EVA
during miasion

Inpect and
repair es
nec sary

InSpect and
repeir as
necesalry

Inspect and
repair as
necessary

Nem: Tvo of the three ATM
DGCKs will perform the
rtquired funetions

Critical SFP

Critical SFP

ig

Failure of the
circuitry or its
associated parts

Failure of
circuitry or its
associated parts



ASTRONOMY SORTIE MISSION

FAILURE NODE AND EFFECTS ANALYSIS

EFFECT OF FAIJIRE CORgRECTIVE AC'ICN_

FAILURE
INSTRUMENT OR CAUSE OF EXPERIMENT/ CRITICALITY DURING POST RECtMMENDATIONS /
SUBSYS TEM FAILURE ODE FAILURE CREW I MISSION CATEGORY MISSION MISSION REMARKS

THREE STRAPFOWN
STAR TRACKERS -
functions re t,
measure to l:copo
attitude, to update
both the SO and
telescope strapdton
equations. For the
SO stropdowm .a-
tionso, the meaured
telescope attitude
must be reflected
through the tele-
scope* wide angle
gimbals.

TWO WIDE ANGLE
GTMBAL EXPE~RIENT
POICG ASSEILIES
The telescopes and
High Egergy Arrays
are mounted on two
epere ide de angle
gimball, one gimbal
points the Telescope
and the other points
the High Energy
Arrays with respect
to the SO.

TELESCOPE FINE
STAB.IZ.-TION
ASSEMBLY -
function is to
stabilize the
Telescope vith
respect to the
SO. Three (3)
rotetionel degrees
of freedom to eeom
pletely isolate the

.teleacope from SO
perturbatio -

Lose of telescope
ottitude date to
update the tele-
scope and SO strap-
down equations

Failure of
circuitry or
its asociated
parts

Los of wide angle Circuity,
gimbal for pointing mechsnical or
of Telecope hee 1 Jamming

Lo of Telescope
Wide Anglo gimbal
readout

Los of Pigb Energy
Array Gimbal for
Pointing

Loss of Telescope
fine etabilieation

Pailure of
circuitry or
asocisted parts

ircuitry on
!chenical
failure

'ailure of the
:ircuitry or it

eociated parts

None

None

None

Failur vould
result in lose
of experrimnt
pointing and
possible las
of mission

Failure would
result in los
of Telescope
expariewot

Failure would
result in loss
of mision

Failure would
result in loss
of High Energy
rray experimnt

Failure would
result in loss
telescope
e:eri.mt

of

III

II

II

III

II

None - No EVA
during mission

None - No EVA
during edlsion

None - No EVA
during rission

I poect and
emlair as

necessa:ry

Inspect and
repair as
ncs5eary

Inspet and
repsir a
necery

NOTE: It is conceivable
that two of the three ST*
could supply dequate data
for updating strapdM
equationS

Critical SFP

Critical SFP

Critical Syp

m



ASTRONOM SORTIE lISSION

PA*lURE NIDE AND FFCTS ANIALTSS

Payload Cotrol md Display Coansole SubystemJ

Ir PFAILDPi C EGUTIVE ACTxo

I ~~~~~FAILURE
nSTRUm T OR CAUSE O EXERDI]IM/ CRrTCALIY DURD3G POT l'.tcam=Autu/
SUrBSTs FAILURE HDO FAILUIRE CREW 1ISSIO N CATECORY MISSION MISSION RlRlS

1. Display. CRT

2. Gnerator,
2=ltifnmction
Syebol

3. b
Subsystem

4. V ier
Microfilm

5. Controller,
Hand

6. ission
Tim
Display

7. Tiner.
Event

Display loss or
degradation

Loss of CRT
displsys

Loss of eperi-
iant coaund
capability

Loss of
display

Lo1s of manual
pointing control

Loss of Readout

Readout or
command
(Start/Stop)
Loss

Electrical
failure or
phosphor
degradation

Sync, timing.
memory, ep
or refresh
failure

Incorrect or
no output

Projection
system and/
or film
tronsport

Electrical or
machsaical
failure

Electrical
failure or
burn-out of
display
elemnts

Clock, display
elaent, or
Ilectrical
failure-

None

None

None

None

None

None

Degraded asperi-
sent and support
S/S asnitering O
espsbility

Loss of experi-
mant and support
S/S Monitoring
capability

Probable
termination of
axperiment
operation

Loss of proce-
duras display

Operational
degrdastio due
to los of manual
control of targt
acquirition

Possible degrada-
tion of exparimm
data if sequence
start tim
critical

Unable to time
sequnces or
provide aCto
start/Itop of
tined seqonooe

SIn

in

IIIIXI

III

None - ri-
mant operatito
may continu
using on CRT

Nona

Replace - Sor
Remarks

Use hbrd copy
proceduru

Replace with
on-board spar

may be pouible
to display tim
on CRT

e mission time
display a backup

Replace failed
unit

Repla failed
unit

Replace

Replace

Bmplace

Replace

Replace

TO CRT dspla are p ided
sash ha"iat the iatial capa-
bility to display pe t
rid ad/or mtg date

Nota: Unit proides two eha la
of data handlig onu fr cash
CRT. Aate wedusmby to
eliduate Slh atff ettin both
CR or backup egind

Prid redudant ubsystem or
on-bonard pare. Critical SIP

Provide on-boasd epar a provLnd
redundlt cabling in conole

t



ASTRONSGY SORTIE MISSION

FAIUlIR MCE ANDmorF N ANaYSvtS

Payload Control ad Display Console Sub Iyste j |

EFPECT OF FAIWUBE CORRECTV*E ACT[ON

AILURE
INSTRUENT OR CAUSE OP EXPERINENT/ CRITICALITY DURING POST RECMENATIONS/
SUBSYSTEM FAILURE HODE FAILUIRE CRW SS ION CATEGORY tMS SION FS S CION RELARIS

L of 
C R 

M4 

50A

Loss of an
individual
Alert Status
Indicator

lUs of an
individual
channel of
data reeording.
Loss of all
channels for power
supply failure.

Status aay be
displayed on
CRT

Use alternate
channel, if
possible

Rellace

Rejnve and
repair

NOTE: Bus voltage and IQ
elemsnts have sign rtdsiamay.
Funetions monitored s man-tine
erew action

Provide redundant por supplie

22

8. Indicator,
Advisory

9. Recorder
Strip Chart

Loss of display

No or Eratic
output

Loss of bus
voltage. lamp
burnout, or
loss of signal

Element, axpli-
fier, or poer
supply failure

None

None

III

IIII



APPENDIX Bi-1

PAYLOAD DATA ANALYSIS

INTRODUCTION

This appendix defines the data requirements for the Baseline Payload

Combinations. Data rates and formats are derived from the instrument

Baseline Experiment Definition Documents (BEDD's) of Volume II, Book 2.

Operating times are derived from the on-orbit operational sequences.

Total data to be stored on board is calculated for the proposed mission

and requirements for immediate display of data are indicated in per-

centages of the incoming data. Data to be telemetered during the 7-day

mission consists mainly of engineering and status data to inform the

Principal Investigator at the Space Astronomy Control Facility of ex-

periment operation. A sampling of scientific digital data from the

Infrared Telescope and the arrays is included.

1
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APPENDIX B1-2

PAYLOAD ELECTRICAL POWER ANALYSIS

INTRODUCTION

This appendix outlines and summarizes the electrical power require-
ments for the baseline mission payloads. The power requirements for the
scientific instruments and for supporting equipment were derived from
the Baseline Experiment Definition Documents of Volume II, Book 2. Sub-
system power requirements were derived for the stabilization systems
and for the supporting electronic assemblies defined in Volume III, Sec-
tion 3.
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ELECTRICAL POWEIR ANALYSIS FOR PAYLOAD:

InstrumentiEquipment PC&S Support Electronics - Power
Description-\(Power) Power Data Electrical C&D Totals

Photoheliograph 25 W 4 W
- Instruments 50 W 359W
- Subsystem 30 W

#1 Mount 250 W

SHG - Instruments 50 W 906 W
- Monitor 12 W

IC/OC Assembly 40 W
- Sun Sensor 11 W

XRT - Instruments 110 W 547 W
- Monitor 10 W
- H-Alpha 10 W

#2 Mount 250 W 25 W 4 W
Correlation

Tracker 25 W

CMG Assembly - Pallet 150 W 5 W 4 W 159-W

Controls & Displays 415 W

(55 W) (12 W) (415 W)

TOTALS 348 W 650 W 482 W - -1480 Watts

SOLAR 1-2



ELECTRICAL POWER ANALYSIS FOR PAYLOAD:

Instrument/Equipment PC&S Support Electronics - Power
Description- (Power) Power Data Electrical C&D

. l ._I 

Stratoscope III
- Telescope

Mount

Array Group A
- Wide Coverage

Detector
- Flux Detector

140 W

70 W
30 W

Controls and
Displays

CMG Assy - Pallet

Array Mount
(Groups B,C,D,E)

250 W

150 W

75 W

4W25 W

400 W

400 W

5W

25 W

55 W

4W

4W

12 W

Totals

419 W

100 W :

519 W

400 W63

159 W 663 W

104 W )

Common Subtotals (240 W) (467 W)
(475 W)

3AB 410 W 475 W 467 W
(NB Spect/Polarim 170 W)

3AC 338 W
(Gamma Ray Spect 34 W) 475 W 467 W
(Lo-Bkgnd Det 64 W)_~~4 W

3AD
(Lg

3AE
(Lg

441 W
Mod Collim 201 W)

Area X-ay 200 W)

I(Coll. Xtal. Spect
~--_

475 W

475 W

467 W

467 W

3AB- [1352 WATTS |

3AC- 1280 WATTS

3AD- 1383 WA IT

3AE- _ 144l WATTS

I

I
iI

S'.IATOSCOPE III

~ _

62 W)



ELECTRICAL POWER ANALYSIS FOR PAYLOAD:

Instrument/Equipment
Description- (Power)

Infrared Telescope
- Instruments
- Support

Mount

Array Group A
- Wide Coverage

Detector
- Flux Detector

Controls and
Displays

CMG Assembly-Pallet

Array Mount
(Groups B,C,D,E)

40 W
40 W

70 W
30 W

- ---- L -.I I --

PC&S
Power

250 W

150 W

75 W

Support Electronics - Power
I Electrical

4W

4W

4W

12 W

C&D

325 W

Data

25 W

5W

25 W

55 W

Totals _

359 W
i

6i ' 459 W

100 W

325 W

159 W 588 W

I 104 W J

325 W

Common Subtotals (180 W) (475 W)

4AB 350 W
(NB Spect/Polarim

4AC 278 W
(Gamma Ray Spect
(Lo-Bkgnd Det

4AD 381 W
(Lg Mod Collim

170 W)

34 W)
64 W)

201 W)

200 W)
62 W)

475 W

475 W

475 W

475 W

.392 W

392 W

392 W

392 W

4AB- 1-217 WA TTS 

4AC -

4AD-

4AE-

1145 WATTSI 1145,W A T T
S I

1248 WATTS

(392 W)

4AE 442 W
(Lg Area X-Ray
(Coll Xtal Spect

-----t---·-------- -,I---------.-f_____ I -___ I~~~~~~~~~~~

INFRARED TELESCOPE

-
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B3.1. QUATERNIONS: COMPUTING SPACECRAFT ATTITUDE

The attitude of a spacecraft with respect to some reference

frame can be described by a set of four parameters called quater-

nions. These four parameters are based on Euler's theorem that

states that the rotational displacement of a rigid body from some

initial orientation can be described by a single rotation about

a fixed axis. This axis is referred to as an eigenaxis since it

is common to both the reference and vehicle coordinate frames.

The uaternns describ the attitude of a spacecraft by defining

the eigenaxis and the appropriate angular displacement about this

axis necessary to transfer from the reference frame to vehicle

space.

B3.1.1. Definition - Assume that the rigid body shown in figure

B3-1 is rotated with respect to some reference frame XYZ about an

eigenaxis E defined by the three directional angles a, $, and y

through an angular displacement 0. Assume that E is a unit vector.

E-cosai+cosBJ+cosyk (1)

A A A

where i, J, and k are unit vectors along the X, Y, and Z axes,

respectively. Let the reference coordinates x,y,z define the

location of a point P in the body prior to the rotation 0 about E.

Define a second coordinate system x'y'z' such that x' lies

along the eigenaxis E, y' lies in the YZ plane, and z' forms the

remaining axis of the orthogonal coordinate triad x'y'z'. Let i',
A

j', and k' be unit vectors along x', y', and z', respectively.

i', j', and k' in terms of i, j, and k equal

i'-E-cosai+cosaj+cosak (2)

^ ixi' cosa + cos8
J+ k (3)

sin'e sin sin(3)

k'=i osC= os1 [(y)cosc+cos$j
sina

-cosacosYc] (4)
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z
y'

E, x'

/ S ; xY

RIGID BODY

Figure B3-1. Rigid Body Coordinate Systems
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The transformation from x'y'z' to' XYZ space can be defined by
the following transformation:

Xe

I y'
R-R

cosy
sinc

cosin
sinca

cos 2B+cos 2y
sina

cosacosB
sinoa

cosacosy
sinc

(5)

Define a third coordinate system

rigid body. Assume that prior to the

XvYvZv that is fixed to the

rotation B about E, that

the two coordinate systems x'y'z' and XvYvZ
v

are

coordinates of point P in body space XvYZv are

X
v

Y
v

z
v

[ R'+-R ]

x

y

z

aligned. The

(6)'

where

cosa

0

cos2 +cos 2
sina

Now assume the rigid body
(X

v
axis) through the angle B.

is rotated about the eigenaxis E
This rotation can be thought of

as a transformation from the x'y'z' coordinate frame to the new
location of the XvYvZv coordinate system as shown in figure B3-2.

The resulting transformation from X Y Z to x'y'z' is
V V V

B3-4

X

Y

Z

where

Icosa

co0B

cosy

R 4-Ri

cosB

cosy

sina

cosacosn
sina

cosy

cosB
sina

cosacosy
s ina



y y'
v

0

Figure B3-2. Rotational Displacement 9 of X Y Z

From x'y'z'
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XI

ZI

Xv

Y
v

z

(7)

where

1

0

The new location of point

to the rotational displacement
transformation.

0 0

sine cose

P in the XYZ reference frame due

0 about E is given by the following

x x

Y '[ RzR' ] ['R",. v] [ OR4 R] Y

[z z

[~[~R-R+ ][OR',-vI R,+R]

(8)

(9)

such that

X x

Y ='[] y (10)

Z z

The transformation [0] describes the new location of the rigid body
with respect to the XYZ reference frame. [0] equals

[01-

all a12 a13

a2 1

a3 1

a22 a23

a32 a33

(11)

B3-6
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where

all l-2sin (-2)sin 2

1 22[sin (2t)cosccosB-sin( -)cos((2)cosy]

a19.2[ n 2 8 8
•a 2 [sin 2( )cosacosy+sin () cos (2)cos]

a21-2sin
2

2 8 8

a2132[sin 2(G)cosScosy-sin(-)cos( )cosy]

a1-2[sin 2()coscosy-sin( 7 )cos( cos0]
23 2 2 2

a3 1'2[sin2 (-)cosycos-sin()cos(-)cosS]

28 2
a33 1-2sin 2()sin y

The relative orientation of the two coordinate systems,
X YVZV with respect to XYZ, can be specified by either the trans-

formation []1 or by the single axis rotation defined by E and 9
that would align both coordinate frames. The following four

parameters ql, q
2
, q3 , and q4 can be used to specify E and 8.

ql-cos () (12)

q2sExsin(-) (13)

q3 Eysin() (14)

q4=E sin( ) (15)

These four parameters are referred to as the four Euler rotational
quaternions. Ex, Ey, and E

z
are the directional cosines that de-

fine E (Ex-cosa, Ey-cosB, Ez-cosy). These four quaternions ql,

B3-7



q2' q
3
, and q4 are often written in the form of a complex number

q.

q-ql+q2i+q3J+q4k (16)

where i, J, and k are the unit vectors along the X, Y, and Z
reference axes, respectively.

These four quaternions ql, q2' q3 ' and q4 are sufficient to
determine completely the transformation [0]. It can be shown that
......the n....e ..o. . l all' a12' ... , a33 can oe written in

terms of these four quaternions.

allql +q2 -q3 -q4 (17)

a
1 2

'2(q2q3-q1q4) (18)

a13 2 (q2q4+qlq3) (19)

a2 1 2 (q2 q3+qlq4) (20)

2 2 2 2
a2 2 'ql -q2 +q3 -q4 (21)

a23 '2(q3q4-qlq,) (22)

a31 2(q2q4-qlq3) (23)

a3 2'2(qlq2+q3q4) (24)

a33 ql -q2 -q3 +q
4 (25)

Since the transformation (0] completely describes the location of
the rigid body shown in figure B3-1 with respect to the XYZ
reference frame and since [0] can also be written in terms of
ql1 q2' q

3, and q4' these four quaternions like [0] also completely
specify the orientation of the XvYvZ coordinate frame.

The advantages of using quaternions instead of a transforma-
tion like [0] for determining the attitude of a spacecraft are (1)
only four parameters instead of the nine components of. [], all,

B3-8



a12, ... , a
3 3 , must be determined, (2) the quaternions can be

readily computed from sensed body rates as will be shown in the
next section, and (3) the form of the quaternions can be readily
used by the spacecraft's attitude control system.

B3.1.2. Strapdown Equations - The strapdown equations are a
set of equations that are used to digitally compute the four
quaternions by using sensed body rates. In the case of a space-
craft, these body rates wx , y' and w are normally sensed and

measured by at least three rate gyros rigidly mounted to the
vehicle.

Assume that the orientation of the rigid body shown in figure
B3-3 is due to the Euler rotations 4, q, and 0. The order of these
rotations is (1) an angular rotation P about the Z axis, (2) a n
rotation about the displaced X axis, and (3) a 0 rotation about
the displaced Z axis. The A, n, and * Euler rotations correspond
to the following transformations []s,, [']n, and [L]+, respectively.

cosP

[0]~= -sin*

0

[t] n

1

0

O 

cosO

ri- -sinO

0

sink 0

cos*I 0

0 1

O 0

cosn sinn

sinn cosn

(26)

(27)

(28)

sins 0

cosu 0

0 1

The transformation from the reference coordinate
the rigid body coordinate frame XvYvZ

v
equals

Xv X

Zv z

system XYZ to

(29)

B3-9
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y
v
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Figure B3-3. Euler Rotations ', r, p
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The rigid body rates x , wy, and wz can be written in terms

of the three Euler rates *, n, and $ as follows

I 0°

CO -Pl [D] [5] 0

Simplifing the above expression, w , wy, and

wyher

where

0

oz equal
Z

(30)

(31)

The Euler rates

Wy, and Wz equaZ

i. n. and

sinnsin{ cos{

sinncoso -sin{

cosn 0

I as a function of

1

$ W~~x

A --101-1$ 

$ CO

0

0

1

the body rates w x

(32)

where

B3-11



sin$ cosB O
sinnl sinn

[O] u. osO -sino 0

s in0co csn coS°cosn 1
sinrn sinn

[] 21 is the inverse of [*]~.

The three Euler rotations t, q, and 0 can be represented by
three complex quaternions. The following quaternions q., qn, and

q, correspond to the J, n, and * Euler rot_;lons, respectively.

q-cos- +sink (33)

qn-cosnq +sin~2 (34)

q+-cos +s (35)

The quaternion q that describes the final orientation of the rigid
body as the results of the three Euler rotations V, n, and * can
be computed by performing the following quaternion multiplication.

q-ql+q 2 +q 3 J+q 4 k -q qnq0

+(cos +si) (cost +sinzi)(coso2 +si84) (36)

Note that

^2 "2 ^2i -j -k -- 1
^A AA A

ij--ji-k

jk--kj-i

ki--ik-j

The compbnents of q equal

q,.lsc4osco o -osino (37)2 -sin *1`s'sin

B3-12



q 2 -si ±4ins- i4 +cos0s in dc (38)

q n3ssinsil cosf -cosasin2siJ (39)

q4 -ilncos2coso +cosicos-s in (40)

The time derivatives of the above expressions for ql, q2, q3,

and q4 can be written as follows:

alq a 
1
6 al~ !

q2 a21 2 28 6 2 n (41)

q3 a 3 $ a36 a3$

q4 a4 a46 a4$

where

al--sin..cosB cos -coscos-osi

a2cirkssnin5 sin -cos%
4

inAcosa

al*m-cos~osfsin -sincs'ospl
2 2 2 2 2 2

• 'cos- sin sin4 -sin*si ncost4' COOCB2 2 2 2 2n 2

a Si1Aos, sint +cos*,ocOlc lt
2A' 2 2 2 2 2i 2

• insin-r-coso -cos~sin!sin'*
2$-s 2 2 2 2 2 2

a sin-iosai +sin~siA- int

a 3$- s irinsn-cos-o.in-I-c~

a c0st-COafl-cos§ -sin-tcosisin-54$ 2 2 2 2 2 2

B3-13



a8 -- sinsin' os1 -cos8snl sint

a I *coslcos I -inicotscir 

By substituting equations 32 into 41 and then simplifing, q in
terms of the body rates wx Wy, and Zw equals

ql 1 -K2 -q3 -q43 I- 
T1 to-3- !

q2 2 ql -q4 q3 (42)

q3 q4 q1 q2

q4 -q3 q2 ql

Using the above relationship, the quaternion rate q is computed
irom the sensed body rates w x , and w. The computed rates

iq s then integrated using a numerical integration technique to
compute q. Equation 42 and the equations used to perform this
numerical integration are referred to as the quaternion strap-
down equations. Assume that the numerical integration technique
selected is trapezoidal integration. The resulting expressions
for ql, q2' q3' and q4 are:

ql-qlp+0.. 5[
1
p+ 1]At (43)

q2'q 2p+O- 5[ q2p+'2]At (44)

q3 q3p+ 0.5[q3p++ 3]At (45)

q4'q 4p+ 0.5[ q4p+ 4 At (46)

qlp 'q qp' q and q4p are the previously computed quaternions
while qlp, q2p' q3P' and q4p are their corresponding previously
computed quaternion rates. At is the sample period in seconds
between numerical integrations.

The numerical integration of q to obtain q must be initialized
and occasionally updated to correct for computational errors and
the accumulative effects of errors such as rate gyro drift con-
tained in the measured body rates wx. wy' and wz. To perform

this initialisation or update procedure, the transformation [I]

B3-14



from reference space to body space must be determined. This up-
date procedure is normally performed using star tracker attached
to the spacecraft. The star trackers are used to measure in
vehicle coordinates the location of two reference stars whose
coordinates in the XYZ reference frame are known.

Assume that the locations of two reference stars in the XYZ

reference frame are given by the two unit vectors, 1 and 2

and that their corresponding vehicle coordinates are described

by the unit vectors Sl ' and S2', respectively. In order to com-

pute [f], two additional unit vectors S 2 and S ' must be com-

puted. S12 and S12 are computed from S
1
and S2 and S

1
' and S2

respectively.

12 - _ S
1

2 l (47)

S1' -2 (48)
S1 XS211

I All represents the norm of the enclosed vector A. S12 and S12

are unit vectors that are perpendicular to the planes formed by

S1 and and S ' and S2', respectively. These six unit vectors

sl t2' S12' 1 1' 2' and 12' completely specify the trans-
formation [U]. To compute [t], the following relationships must
be satisfied.

(49)

S2 "[l]s 2 (50)

81201['0glS12 (51)

where

al] a1 aa1 2 13

[Sj]' 21 a22 a23

a31 a 3 2 a33
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Assume that the unit vectors Sit I
are

tI1 c12

C13

t2'

l11

dl 2

d13

f11

t12' f12

f1 3

Substitute the above vectors into

S2.(]oi
2
.

S12-[o1t12 -

C1 1 a11

c12 a21

C13 a

dll al

dl2 a21

d13 a31

f12

f13

all

a21

a31

t2' t2" 2 12' 12and 12

C2 1

a221 c22

C2 3

21

2 1d2 2 1

d2 3

f 2 1

a12 f22

f23

equations 49 through 51.

81 2 a13 c21

a2 2 a23 c22

832 a33 C2 3

12 a13 d21

a22 a23 d22

a3 2 833 d23

a12 a13 f21

a2 2 a23 f22

32 a33 f23

B3-16
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Equations 52
expressions.

through 54 can be rearranged into the following

11 21
dll ' d21

f11 f21

c12 c21

d 1 2 d21

f12 f21

c 1 3 c21

d1 3 d21

f13 f21

c 2 2 C2 3

d22 d23

f22 f23

all

a12

a13

(55)

(56)

c 2 2 c23 a21

d22 d23 a22

f2 2 f2 3 a2 3

c2 2 C2 3 a31

d22 d23 a32 (57)

f22 f23 a33

Applying Cramer's rule for solving simultaneous algebraic equatic
the components of [1], a811, a12, ... , a33, can be computed using
equations 55 through 57. Note that the 3 by 3 matrix appearing
in each of these equations are identical. The symbol A is used
to denot, the determinant of this matrix. A equals

ons,

c 2 1

A-det d21

f 2 1

c22 C23

d22 d2 3 c21(d 22f23 -d23f22)

f22 f2 3

+C2 2 (d2 3 f 2
3 -d 2 1 f 2 3 )+c2 3 (d 2 1 f 2 2 -d 2 2 f2

1 )

The nine components of ([] in terms of the components of S, 2,

112' 11 'l2 and 212 equal

B3-17
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Cl1

det dll

all' f11

c 2 2 C2 3

f22 f 2 3

+C22 (d 2 3 fll-dllf 2 3 )+c2 3 (dllf2
2

-d 22fll)1]/A

L;21 11 c23

d21 d11 d23

f21 _ fll f23
A

-[c 2 1 (dllf 2 3 -d 2 3 fll)

+c 1 1 (d 2 3 f21-d2 1 f 2 3 )+c 2 3 (d 2 1 fl-d 1lf 2 1 )]/A

c 2 1 C2 2 c11

det d d2 d· 21 22 11dll

f21 f2 2 f1 1 -(c 2 1 (d 2 2 f1 1 -d 1 1f2

+c22 (df21-d 2 1 f 1 1 )+ll (d 2 1 f 2 2 -d 2 2 f 2 1 )]/A

C1 2 c 2 2 C2
3

d12 d22 d23

f12 f22 f 2 3 I 1c 1 2 (d 2 2 f 2 3 -d 2 3 f 2 2 )

+C2 2 (d 2 3 f 1 2-d 1 2 f 2 3 )+c 2 3 (d 1 2 f 2 2-d 2 2 f 1 2 )]/A (62)

c21 c12 C23

d21 d12 d23

a22' [c 2 1 (d 1 2 f 2 3 -d 2 3 f 1 2 )

.+ 1 2 (d 2 3 f 2 1 - 2 1 f 2 3 )+c 2 3 (d 2 1 f 1 2 - 1 2 f 2 1 )/

B3-18
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det

a21'
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a13'



c21 C2 2 C12

d21 d22 d12

f21 f22 f12 '[c2 1(d2 2f12-d1 2f2 2)
A

c1 3 c 2 2 C2 3

d13 d22

f13 f22
A

[c 13(d22f 2 3-d23f 2 2 )

+c2 2 (d 2 3 f 13 -d 13 f 2 3 )+c2 3 (d1 3 f22-d2 2 f13)]/A

c21 C13 C2 3

d21 d13 d23

(65)

+c13 (d23f21-21 2 1f23 )+c23 (d21 f13-d1 3 f21 )]/

c21 C2 2 C1 3

d21 d22 d13

f21 f22 f13

(66)

[c 21(d22f13-d13f22)

+C22(d1 3f21-d2 1f13)+c1 3(d2 1f22-d2 2f21 )l]/ (67)

The four quaternions ql, q2, q3, and q4 can be computed using
the components of [$], all, a

1
2 , ... , a33 defined in equations 59

through 67. In order to compute ql, q2, q3, and q4, one needs
only to determine the eigenaxis E and the rotational displacement
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a23"

a31=

(64)

a32=

det

a33=

+c22(d12f21-d21f12) +c12( 21 22 -d 22f21)]/A



9 about this axis as specified by [(]. 0 can be computed using the
unique property that the trace of [$] equals 1+2cos0.

3
trace of []1-Z aii-l+2 cosO (68)

i-1l
9 equals

8-cos [0.5(a1 1 +a2 2+a3 3-1)] (69)

-.
The eigenaxis E is defined by the three direction cosines, cos a,
cos a, and cos y. These three direction cosines are designated
Ex, Ey, and Ez, respectively. Using equations 17 through 25, it

can be shown that E , Ey, and E equal

a32-a23
E Xco8sa 3 e' (70)

4cos (-) sin ()

a13-a31E 'cos0 - 13 (71)
Y 44cos(2)sin(2)

a21-a12
Ezcosy= 2112 (72)

4cos () sin (-)

Using the results of equations 69 through 72, the quaternions ql,

q2 ' q3 ' and q4 as a function of the components of [0] equal

ql-cosG() where 0cos- [0.5(all+a22+a33-l)] (73)

8 a32-823
q2 =E sin(T )W - 4 (74)

3 a1 3 -a31
q3 -Easin(-) 4q (75)

0 £21812
q"gEasin () 4q1 (76)
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The quaternion strapdown equations are initialized or updated
by substituting the above values of ql through q4 into equation

42 and for those of qlp, q2p' q
3
p, and q4p' respectively. The

affected equations are

q1 -q2 -q3 -q4
1

q2 ' q1 q4 q3 x (42)

93 q4 ql -q2 wy

q4 -q3 q2 ql z

ql'qlp+O.5[;qlps+41t (43)

q2'q2p+O. 5[q2p+2] At (44)

q3'q3p+O- 51[43P3+q]At (45)

q4 "q4 p+O.5[q4 P+q 4 ]At (46)

The above equations 42 through 46 are the quaternion strapdown
equations.
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B3.o2 DETERIINATION OF THREE AXIS ATTITUDE ERROR INFORMATION BY
TRACK(ING TWO GUIDE STARS

The three axis attitude error informtion needed to stabilize
a telescope about its three control axes c*a., be determined by
tracking two guide stars. Tracking a single fsyilde star provides
only two axis attitude error information, agimuth and elevation.
By tracking a second guide star, its roll axis attitude error is
also specified.

Assume these are two stars located in the telescope field
of view as shown in figure B3--4o Let one star be designated
star 1 and the other one, star 2. At time t equal to zero

-:4Vf e n h 1 a-idLA 2 a. ' 

scope coordinates by the unit vectors S1 and S2q respectively.

Assume that at a later time tl, the stars 1 and 2 appear to

have F-ved to new locations corresponding to unit vectors S

and Sf2 respectively. S s 2s s 9 and S2 are signals de-

rived from the telescope sensors. Let S and S.D the local

tions of the two stars at te-, be used as a reference. The

rotational displacement of the telescope is then computed with

respect to the telescope attitude described by S1 and S2 In

order to determine the rotational displacement of the telescope

at time t1, two other unit vectors S1 2 and S1 are needed S
12 12 12

and Sl2 are unit vecotrs corresponding to the cross products of

S1 and S 2 and S1 and S2 ' respectively. S2 and S12 equal
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Figure B3-4. Sketch of Locations of Two Guide Stars S1 and 52 at t=O and ttl1 .



S1Xs2

_SixS 2'
12 1

=

S
1

XSS211

II i'2 1 .

(77)

(78)

where 11SI| equals the norm of the vector S enclosed.

The apparent rotational motion of the stars can be described
by a transformation [T] which is completely defined by the six

vectors Si' S2' S12' S 1 ' S2, and S12 To compute [T], the

following conditions must be satisfied.

S1 1[T]S

S2 =[T]S 2

S12 '
=

T]S12

all

[T]- a
2 1

a3 1

(79)

(80)

(81)

a12 a13

a22 a23

a32 a33

Assume that the unit vectors S1, S1',

cll

S1i c12

c13

d12

- d 21 12

d13

S2 S 2 S12' and S12' equal

c21

S '- d

c23d

S2' d22

d23
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f 11

S12= f12

f13

Substitute the above vectors

S12' f22

if 23

into equations 79 thru 81.

c 2 1

S1'=[TS 1
=

c2 2

C2 3

d21

S2
1
=[T1S2

=
d2 2 :

d23

f2 1

S1 2 '-[T]S
1
2- f22 

f2 3

Equations 82 thru 84 can be
expressions.

a1 1

a2 1

a3 1

all

a2 1

a31

all

a2 1

a31

a1 2

a2 2

a3 2

a12

a2 2

a32

a12

a2 2

a3 2

arranged into

a13 c

a23 c2

a33 C13

a13 d11

a23 d12

a33 d13

a13 f11

a23 12

a33 f13

the following

c13 a

d13 a12

f1d3 a13

C13 a21 1c13 1

d13 | |a22
d13

f131 a23

C13 a31

d13 a32

13 a33

(82)

(83)

(84)

C2 1

d21

f 2 1

22

C22

823

c 1 2

d 12

f 12

c12

d12

f12

c12

d12

f12

Cll

fll

dll

c 1 1

C11= dll

fll

(85)

(86)

(87)
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Using Cramer's rule, the components of the transformation [T],
all, a

1 2
, a

1 3
, a21, ... , a33, can be computed using equations 85

thru 87. Note that the 3 by 3 matrix appearing in each of
these eouations are identical. The symbol A is used to denote
the determinant of this matrix. A equals

Cl1

A-det dll

fll

The nine co

all=

c12 C13

d12 d131 1Cll(d12 13-d 13f 12)

f12 f13

+C 12 d13fll-dllf13 3+c13(d llf12-d12fll )

}mponents of [T] are

c21 c12 C13

det d21 d12 d13

f21 f12 f13 =[c21(d12f13-d13f12)

+c2(di13f21-d21f 13)+c1 3(d21f12-d 12 f21)]/A

C1 C21 C13

dll d21 d13

fll f21 f13 [cll (d2 1 f1
3
-d1

3
f21)

+c21(d13fll- dllf 13)+c13 (dllf2-d21 fll) ]/

C1 1 C1 2 c21

d11 d12 d

fll f12 f21 [Cll (d1 2 f2 1 -d2 1
f1 2

).

A

+C12 (d21lL- 2 c (d f1-d12 f ]/12 21 11 1121 21 11 12- 12 1
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a 12=

(89)

a13'

(90)

(91)



C12 C13

d12 d13

f12 f13
A

'[c2 2 (d1 2f 1 3
-d13f12)

+c
1 2 (d1

3
f 2 2-d 2 2 f

1 3
)+c13 (d2 2 f1 2 -d1

2 f2 2 )]/A

c11 c22 C13

det dll d22 d13

a22 11 f 22 f13 =[C1 1 (d2 2f13-d13
f

+c2 2 (d13fll-dllf1 3)+c1 3 (dllf 2 2 -d2 2 fll)]/A

1 1 c 1 2 c 2 2

d12 d22

fll f12 |22f12)

A

+c (d f -d f )+c (d f -d f ) ]/A
12 22 11 11 22 22 11 12 12 11

c23 C12 C13

d23 d12 d13

f23 f12 f13 '[23(d12f13-d 13 12)

A

+c1 2 (d1 3 f2 3 -d2 3 f1 3 )+c1 3 (d2 3 f1 2 -d1 2 f2 3
)
]/A

fll

C 2 3 c 1 3

d23 d13

f23 f13 .[c ll(d f1 3 -d f23)23 13 23

A

+c2 3(d1 3 fll-dlf+ 1 3 )+c1 3 (dl 1 1 f 2 3
-d2

3
f1 1 ) ]/A
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c 2 2

det d22

f22a21

(92)

(93)

(94)

a31
=

Cll

(95)

(96)

I'

a32'



C11 C1 2 C2 3

det dIl d12 d23

a 3 3 =
fll f12 f23 [C 11(d12f23-d23f12)

+C12(d23f11-d11f23)+23(d 1112 12 11)]/ (97)

Assume that the apparent motion of the stars is due to a
single eigenaxis maneuver. Let a, B, and y be the directional-
angles beLween the eigenaxis and the telescope x, Y, and Z axes,
respectively. Let 0 be the rotation about this eigenaxis neces-
sary to rotate the stars from its reference location described

by S1 and S2 to its location defined by S1' and S2 This maneuver

can be described by the four Euler quaternions ql, q2, q3
, and q4

defined below.

0
ql=cos(7) (98)

q2 =cusrxsin(7) (99)

0
q3=C°sesin(-) (100)

q 4 =cosysin(2) (101)

The transformation [T] can be written in terms of a, S, y, and 0.
The components of [T], all, a

1
2, a1 3, a2 1, ... ' 3 3, are

2 20a 2 2 2 2 
all=l-2sin asin (2)=ql +q2 -q3 -q4 (102)

)-2cosysin-coss (103)

=2(q2q3-q lq4 )

a2 88
al132cosacosysin2 ()+2cosasinfcos-f (104)

=2(q
2
q4-qlq

3
)
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a21 2cosccosBsin (2)+2cosysin2-cos--

=2(q2 q3+qlq4 ) (105)

2 20 2 2 2 2 (
a22=1-2s2 n ssin2(2 )=ql -q2 +q3 -q4 (106)

a23=2cosBcosysin (8T)-2cosa sincos-

-2(q3q4 -qlq2 ) (107)

2 0 C. 0
a3 1-2cosacosysin2( 2)-2cos sinycos-

=2(q2q4-qlq3 ) (108)

32 i2 2c 2a32=2cosScosysin2 (8)+2cosasin~cs0

=2(ql q2 +q3 q4 ) (109)

a 1-2sin
2
ysin2(6 2 2 (110)

33 12sin ysin () 12 - 2- 3 +q4

The eigenaxis is defined by the three direction cosines,
cosa, cosB, and cosy. Let the direction cosines cosa, cosB, and
cosy be designated E , Ey , and E , respectively. These direction

cosines can be derived from the transformation [T] as follows.

a32-a23'4cosasin-cos2

a32 -a23 a 32-a23
E -cosa=- 0_ = 2 (111)

X 4cossin2 4q1 sin0-
0 8

a13 -a3 1 =4cosSsin.cos-

E =cos= a1 3 -a31 13-a 31~E -cos -=i-B 8 (112)

4co2 sin 4qlsin--
8
2
u.4cosy 2 O2

a21-a12'4cosysinaco s

a21-a 12 a21-a12
Ez =C°sy= a e (113)

4cosrsin- 4qlsin-
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The eigenaxis rotation 0 can be computed using the property
that the trace of [T] equals 1+2cosO (reference 1).

trace of [T]= a iijl+2cosO (114)

i=1

1
cos8= 2 (al 1+a 22 33-1 ) (115)

cose can be approximated by the following power series.

82 4 6
cos=l- 1 + 4 6 +' (116)

The rotation 0 corresponds to the telescope attitude error and
should be very small if the telescope's fine stabilization system
is operating properly. Since 0 is small, cosO can be approximated
by

cos0ol- - (117)

Using equations 113 and 115 0 equals

E'(3-all-a2 2 -a3
3 )1/2 (118)

The eigenaxis rotation defined by E
x
, Ey , E , and 8 de-

scribes the apparent star motion. But since the stars are
inertially fixed, their apparent motion is actually due to
the motion of the telescope. The telescope motion is opposite
the apparent star motion and can be described by an eigenaxis
rotation of 8 about an axis defined by -E , -E , and -E 

x y z
The telescope eigenaxis direction cosines E', E ', and E ' are:

x y z

E 'E a23-a32
x x 8 (119)

4q sin 

a 31-a13
E '--E 31 13 (120)

E '-E a1 2 21 (121)
4qlsin-

1 2
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The four quaternions ql, q
2
, q

3
, and 74 describing the rotational

motion of the telescope are:

0 1/2
ql ccosi cos[O.5(3-all-a a a 3 3 (122)

q2 E 'sin = a2 3-a3
2 (123)

q3iE 'n = 31 (124)
2 x 2 4ql

8 a12-a21
'q4=Ezsin- = 4q (125)94 z 2 4q1

Since 9 is small,

si 8

2i2 T (126)

Using equations 123 thru 126, the telescope X, Y, and Z attitude
errors , 0y , and , respectively equal

le a23-a32
8 =2E , 2q2 3 2 (127)x x2 2 2q

e a31-a13
o =2E ,68 y y 2 3= 2q3 (128)

8E a12-a21
6 -2E ,2 (129)
z z 2 4 2q

1 (129)

Listed below are the computational requirements and sequence
needed to calculate the telescope attitude errors 8 x 0 y and 6 .x z

a. The unit vectors S1 , S2 , and S12' are

derived from the telescope fine attitude error
sensor. Initially, these unit vectors are

designated S1, S2, and S12, are stored, and are

used to describe the desired telescope attitude.

b. The components of [T] all, a
1 2
, a

1 3
, a

2 1
,

·.., a33 are computed using S1, S2, and S12

and their present, corresponding unit vectors

SI1" S2' and S12'1 2 12
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c. Quaternion ql is computed using equation 122.

d. The telescope attitude errors x', 0y, and 8z

are computed using equations 127.thru 129.
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B3.3. TELESCOPE POINTING AND STABILIZATION TRADE STUDY

From its stowed position parallel to the floor of the ASM
pallet, the telescope complement tube is deployed to a position
perpendicular to the floor as shown in figure B3-5. The high
energy arrays are similarly stowed and deployed. Hardware com-
monality between the telescope and the array gimballing system
can be realized in this area of experiment mounting and deploy-
ment. As shown in the figure, this Deployed Wide Angle Gimbal
(DWAG) technique affords hemispherical viewing for the telescope
complement and the high energy arrays. To utilize this capability,
the telescope and array gimballing systems must be capable of rota-
tional motion of 90 degrees in elevation and 360 degrees in azimuth.

For the candidate telescope fine stabilization systems investi-
gated, the telescope complement center of mass is assumed to be
located at the intersection of its three control axes to minimize
telescope orbiter disturbance coupling. The payload pointing
requirements used in this analysis are listed in table B3-1. Con-
tained in table B3-2 are the estimated stabilization capabilities
of the two candidate ASM shuttle orbiter stabilization systems, a
CMG system and a low thrust reaction control system (RCS).

The stabilization concepts to be investigated are:

a. Standard telescope mount flexible suspension fine
stabilization gimbal system.

b. Standard telescope mount with spherical gas bearing
fine stabilization system.

c. Standard telescope mount with coarse external sta-
bilization and image motion compensation (IMC) internal
to individual instruments.

d. Wide angle spherical gas bearing mount.

B3.3.1. Standard Telescope Mount - The Deployed Wide Angle
Gimbal concept of figure B3-5 is essentially a standard telescope
mount approach. Experiment pointing is achieved by 360-degree ro-
tation of the telescope yoke combined with 90-degree telescope tube
rotation in elevation to provide hemispherical coverage. For fine
stabilization, a secondary three-degree-of-freedom gimbal system
at the elevation axis is required, or direct stabilization could
be utilized with final image stabilization being achieved internal
to the individual experiments where required. If a secondary gimbal
system is used, the system could employ flexible suspensions/rolling
element bearings or a gas bearing design.
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Table B3-1. ASM Telescope and High Energy Array
Pointing and Stabilization Requirements

B3-35

EXPERIMENT POINTING STABILIZATION

PITCH YAW' ROLL

Telescope 10 prad 0.5 p rad 0.5 prad 25 prad

(2 sec) (o.1 sec) (0.1 se) (5 sec)

High Energy 0.3 mrad 0.3 mrad 0.3 mrad 0.1 rad

Array (1 m-n) (1 min) (1 min) (6 deg)



Table B3-2. CMG, RCS Estimated
Stability Capabilities
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SHUTTLE ORBITER CAPABILITY
STABILIZATION SYSTEM

CMG 0.3 mrad (1 min)

RCS 4 mrad (0.2 deg)



B3.3.2. Flexible Suspension Fine Stabilization - Fine stabiliza-
tion can be achieved by a secondary gimballing system consisting of
an azimuth gimbal, an elevation gimbal and a roll ring for rotational
isolation, figure B3-6. The azimuth and elevation gimbal rings would
be supported at diametrically opposite points with flexible suspen-
sions. Flexible suspensions support rotation by means of criss-
crossed flat springs that flex to allow movement; the action is like
a combination spring and bearing. Unloaded, the flexible suspensions
have a center seeking feature. Flexible suspensions have no rubbing
parts which could produce cold welding, friction, and breakaway
torques. Rotational isolation can be achieved with a roll ring with
rolling element bearings. In order to utilize flexible suspensions
for rotational isolation, it would be necessary to mount the bearing
beyond the rear of the tube and thus cantilever the tube from the
bearing. This approach would present problems in attaining a rigid
system, but would eliminate friction and breakaway torques associated
with rolling element bearings. However, roll stabilization is much
less critical than azimuth and elevation stabilization, so a rolling
element bearing concept appears reasonable for rotation isolation.
The concept of utilizing flexible suspensions in a secondary fine
stabilization gimbal system is probably adequate based on its present
use in the Skylab program.

B3.3.3. Gas Bearing Fine Stabilization - The spherical gas
bearing may offer advantages in terms of gimbal simplicity,
mechanical rigidity, and near zero friction and breakaway torque.
A ball attached to the telescope tube is gas suspended in its
mating socket and thus provides two-axis gimballing and rotational
isolation in one unit. The escaping support gas raises the potential
problem of experiment contamination since gas scavenging would be
difficult due to the vacuum of space, and would not be 100 percent
efficient. Additionally, implementation is a problem due to tele-
scope tube size, and weight and space restrictions. Three possible
bearing locations are shown in figure B3-7: inside the telescope
tube at its center of mass, girding the tube at its center of mass,
or beyond the tube with appropriate counterweights.

Locating the gas bearing inside the tube, (a) of figure B3-7,
would impose design constraints on the Stratoscope III, IR, and
PHG telescopes. Their size relative to the telescope complement
tube would require that the gas bearing be within the telescope
envelope. Packaging of the other experiment clusters would be
difficult due to the presence of the bearing within the tube.
Also, for these reasons, the system is not flexible regarding
future experiments. This approach, therefore, is eliminated.

The second possibility is to locate the gas bearing at the
telescope tube center of mass in a girding fashion as a ball/socket
configuration, (b) of the figure. Manufacture of a spherical gas
bearing of this size (2100 in. diameter) would require a development
program. Fecker Systems Division of Owens-Illinois, builder of the
NASA Ames airborne telescope, felt a bearing of this size could be
developed. Development would be required since manufacture of a
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100-inch diameter bearing would require extension of present
technology beyond that used for the 16-inch diameter Ames tele-
scope bearing; the Ames bearing design can be manufactured in
sizes up to 24 inches in diameter. Fecker Systems estimated
cost for development and delivery of a 100-inch diameter spherical
bearing was approximately $3 million. This concept will be further
evaluated.

The third possible location for the spherical bearing is
beyond the telescope tube, (c) of the figure. This position would
result in a much smaller diameter bearing, which is within the
present state of the art. However, this concept has the disad-
vantage thaC counterw'ighLs would be required to transfcr thn pay-
load (telescope plus counterweights) center of mass to the bearing
area. Due to the shuttle orbiter space limitations, the permissible
location of the counterweights would be very near the gas bearing,
figure B3-8. The counterweight moment-arm length would be on the
order of 0.1 of the telescope tube length as compared to the tele-
scope tube center of mass location of about 0.4 of the telescope
length from the telescope end. Therefore, the required counter-
weight, including any experiment support electronics, would be
roughly three to four times the telescope complement weight. The
counterweight approach is eliminated due to increased volume,
weight requirements, and mounting complexity.

In lieu of a spherical gas bearing, a gas bearing supported
gimbal system could be considered, figure B3-9. The gimbal system
would be constructed similar to the flexible suspensions gimbal
system except gas bearings would be substituted for the suspen-
sions. By comparison, the flexible suspensions and gas bearing
have near zero friction and breakaway torque, but the gas bearing
gimbal system is more complex due to the gas supply. Compared to
the spherical bearing, the gas bearing gimbal system is much more
complex and less rigid by virtue of the gimbal and roll ring con-
struction. The gas bearing supported fine stabilization gimbal
system therefore will not be considered further.

B3.3.4. Coarse External-Internal IMC Stabilization - Simplifi-
cation of the gimballing system for the telescope tube can be
realized if coarse external, internal IMC stabilization is utilized,
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see figure B3-10. The azimuth and elevation axes, figure B3-5, of
the Deployed Wide Angle Gimbal would be coarsely stabilized directly
in order to eliminate the azimuth and elevation axes portions of
the secondary gimbal system. This approach requires that final
stabilization be performed within each experiment. Coarse azimuth
and elevation stabilization can probably be achieved to approximately
1 arc-second, IMC internal to the experiments would then provide fine
stabilization (0.1 arc-second range) for those experiments requiring
this level of stability. A rotational isolation device would still
be required; internal vernier rotational stabilization is not rec-
ommended since it would be extremely difficult to achieve and could
alter image quality.

Although the gimballing system is simplified, the design of
individual experiments may become complicated and, in certain in-
stances, very complicated and expensive. Also, any additional
experiments with stability requirements finer than 1 arc-second
would require an internal IMC with attendant design costs and
probably delays, thus reducing the flexibility of the pallet to
accommodate a variety of payloads. This concept will be further
evaluated.

B3.3.5. Wide Angle Spherical Gas Bearing Mount - Implementation
of a wide angle spherical gas bearing involves replacing the azimuth/
elevation drives of the Deployed Wide Angle Gimbal with a gas bearing,
but retaining the azimuth table and deployment concept. The gas
bearing would then be positioned at the elevation axis with, or
without, an additional gimballing system for fine stabilization.
Physically mounting the bearing is a problem. The three mounting
positions available are shown in figure B3-11. Locating the bearing
within the tube cavity, (a) of the figure, imposes design restrictions
on the large experiments, e.g., for SIII, IR, and PHG (SIII: Strato-
scope III; IR: Infrared Telescope; PHG: Photoheliograph), and hampers
packaging of other experiment groups. Also, the restricted motion
available with this approach severely limits viewing. Similarly,
mounting the bearing beyond the tube with the addition of counter-
weights results in severely restricted motion, (c) of the figure. In
addition to the volume penalty, the weight penalty is high due to
the moment arm length available and vehicle space limitations,
as pointed out previously for the small angle spherical bearing
analysis. As the third possibility, the bearing could gird the
telescope complement tube at its center of mass, (b) of the figure.
As previously stated for the standard telescope mount, a bearing
this size is beyond the state of the art and would require develop-
ment. Also, as can be readily seen, hemispherical coverage is not
possible due to interference between the bearing parts at the
extremes of rotation in elevation; the azimuth axis presents no
problem. The arc of travel in elevation is dependent on the
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degree of spherical envelopment of the bearing parts and is esti-
mated to be +20 degrees. Based on these analyses, the wide angle
spherical gas bearing configurations of figure B3-11 are eliminated.

The girded bearing concept, (b) of figure B3-11, may have cer-
tain inherent performance advantages which warrant further analyses,
of the concept. An alternative configuration, figure B3-12, eliminates
the drawback of limited rotation. Two spherical bearing ball/
socket segments are mounted on the deployment mechanism at dia-
metrically opposite positions, as opposed to the ring mount con-
cept of (b) in figure B3-11. This concept would permit 180 degrees
of rotation in elevation about a prescribed axis. With this motion
range, hemispherical coverage is possible when azimuth rotation
is performed at the azimuth table. Using the girded-bearing con-
cept, direct stabilization may be possible without the necessity
for a secondary gimbal system, which would make the system more
rigid and less complex. Available gas bearing pad size, mechanical
support, end actuator design, and scavenging are some areas that
require further investigation to determine feasibility. Also,
the control problem that may occur with two gimbals as the system
tracks near zenith will require a solution; perhaps the addition
of another gimbal. Because of its potential inherent performance
advantages, the system will not be eliminated although feasibility
has not been established.

B3.3.6. Tradeoff - The stabilization systems to be further
evaluated are:

a. Flexible Suspension Fine Stabilization

b. Small Angle Spherical Gas Bearing Fine Stabilization

c. Coarse External-Internal IMC Stabilization

d. Wide Angle Spherical Gas Bearing Mount

All systems use the Deployed Wide Angle Gimbal as the basic
mount. The coarse external-internal IMC stabilization system and
the wide angle spherical gas bearing mount require no secondary
fine gimbal system except for a rotational isolation device for
the IMC system. The remaining two systems include a secondary
gimbal system with azimuth, elevation, and roll axes stabilization.

From a subsystem point of view, a cursory look might suggest
that coarse external-internal IMC stabilization may be the most
favorable. However, its impact upon the overall ASM program
warrants closer examination. Image Motion Compensation (IMC)
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refers to equipment included in an imaging instrument that is

used to correct for improper tracking by the instrument's primary
optical axis. Generally it involves the mechanical motion of one

component of the optical system (for example, rotation of a folding

mirror, or lateral translation of a lens) in such a manner as to

null out the signals detected by a "fine pointing error sensor."

Image motion compensation is often referred to as involving an

"image stabilization system" or an "internal vernier system."

A key element in the IMC system is the fine error sensor.
(Development and implementation of the fine error sensor systems
will be required regardless of the technique used to achieve the

specified stabilization.) The sensor should have rms noise and

accuracy performance characteristics at least a factor of two better

than the desired image stabilization accuracy. Ideally, this fine

error sensor cracks a feature of the image, as formed by the instru-

ment's main optics. If the same image is observed by the primary

detector and by the error sensor, instrument flexure problems can
be overcome with image motion compensation (loop is closed through

the error sensor). If a separate optical system is used for the

fine error sensor, it is necessary to carefully adjust the gain

of the control signals for the image motion compensation system,

to prevent undesired image motion effects due to over- or under-

compensation (IMC actuator loop is not closed through the error

sensor).

For each type of imaging system, there exists a limited number

of good techniques for IMC implementation. The difficulties (and

cost) of IMC implementation depend in the characteristics of the

individual instrument. The main telescope characteristics that

affect IMC design are detailedin table B3-3.

As a general rule, IMC implementation is relatively simple

if the telescope has a high f-number (f-25 or higher), a small

field of view (0<1 mrad) and includes a fine error sensor that
uses the same image used by the scientific detector, such that

the loop can be closed through the error sensor. All of these
key characteristics are found in the photoheliograph. Over the
entire spectral range of the photoheliograph, the sun is such a
bright source that the image must be attenuated before it reaches

the detector: no penalty is incurred if part of the telescope's
image is sjiit off and routed to the fine error sensor. For the
other candidate telescopes, at least one of the simplifying
features is not available.

The f-number of the Stratoscope III telescope is f-12, about

twice as fast as the f-25 lower limit. While the scientific field

of view is only 1.8 mrad, the internal fine pointing error sensor
system can only be implemented if the telescope's total available
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Table B3-3. Telescope Characteristics That Affect IMC Implementation

SPECIFIED
ANGULAR IMAGE INSTRUMENT INSTRUMENT CONTROLLED INTERNAL

INSTRUMENT RESOLUTION STABILIZATION F-NUMBER FIELD OF VIEW COMPONENT FINE ERROR

(microradians) (microradians) (milliradians) SENSOR
FEASIBILITY

PHOTOHELIOGRAPH 0.6 0.5 3.85/50 0.9 Folding Yes
mirror

STRATOSCOPE III 0.5 0.5 2.2/12 1.8 Secondary Possible
mirror

INFRARED TELESCOPE 2 <2.5 1.5/10 1.5 Secondary Doubtful
or folding
mirror

XUV SPECTROHELIOGRAPH 3 0.5 12 9 Concave No
objective
grating

X-RAY TELESCOPE 2.5 0.5 10 3 Detector at No
image plane



field of view is on the order of 20 mrad (about 1.2 degrees) to
insure that sources bright enough for fine tracking will be found
within the field of view with high probability. All components of
the imaging optical system must be large enough to handle a large
image field (about 30-cm diameter) with comparatively fast (f-12)
optics. The component currently suggested for mechanical control
in an IMC system is the secondary mirror of the Cassegrain optical
system. For the Stratoscope III telescope, the secondary mirror
must be approximately 40 cm diameter; after allowance for a mounting
and support structure, the secondary assembly will have a mass of
40 to 50 kg. Precise positioning of such a massive component with
a fast response servo system is not a simple problem. Feasibility
of a closed-loop IMC is not yet verified, but Reems to be within
the current state of technology.

For the infrared telescope, the f-number is even lower, f-10
nominal. The scientific field of view is conveniently small (1.5
mrad). Implementation feasibility of an internal fine error sensor,
using the main instrument optics, is doubtful at best. The narrow
field of view limits the availability of bright sources. The in-
strument's operating wavelength range is at considerably longer
wavelengths than the sensitive range of the standard optical sensors
used for error detection. Therefore, only open-loop IMC appears
feasible. It should be emphasized that the low temperature cryo-
genic environment (20 K) within the instrument is undesirable for
accurate mechanical motion and control of an optical component.

The XUV Spectroheliograph's image field is curved, with center
of curvature approximately midway between the entrance aperture and
the concave imaging grating. The grating is the only optical ele-
ment available for IMC control; grating rotation will induce some
undesirable focus errors, particularly at the ends of the image
field. It is deemed impossible to develop an internal fine error
sensor using the instrument's main optical train, due to the low
level of solar flux in the extreme ultraviolet, the dispersed nature
of the images, and the limited availability of distinct solar fea-
tures in the XUV range sharp enough for precision tracking (these
only appear occasionally). Only open-loop IMC can be mechanized.

For the X-Ray Focusing Telescope, it is not possible to use
an intermediate optical component to achieve IMC, simply because
none can be used. Either the primary objective system or the
detector system must be translated laterally to compensate for
tracking errors. (An alternative was suggested, involving the trans-
formation of the x-ray image to an electron image on a thin-window
photocathode. The electron image could then be stabilized (open
loop) using star sensor outputs for control signals. This technique
is adequate for an imaging experiment, but is invalid for spectro-
metric experiments.) Both of these components are massive, and are
at opposite ends of the instrument, far removed from the instrument's
center of mass. If either of these components is translated,
high induced torque levels will develop which will adversely affect
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other instruments in the telescope system. The fine error sensor
cannot use the telescope image, so that IMC is restricted to open-
loop operation. The anticipated flux level is usually too low to
allow splitting off any part of it, and only on rare occasions are
the solar features sharp enough in this spectral range for good
tracking accuracy.

It is recognized that Stratoscope III is a special case, due
to the high similarity of the optical configuration with that of
the Large Space Telescope (LST). If a design for an IMC system is
developed for LST, it can be scaled down and used in the Stratoscope
III instrument, thus realizing a substantial cost savings in the
overall space astronomy program.

Based on the above discussions, budgetary estimates of the
cost of developing and implementing satisfactory IMC systems for
the five instruments are shown in table B3-4.

Overall ASM program cost would be increased by at least $6.4
million in order to incorporate the internal IMCs required
by the experiments. Also, adding internal IMCs to the experiments
would in effect reduce the reliability of the stabilization system
since the stabilization system performance is now directly tied to
the internal IMC system. Most of the trade-off parameters are sum-
marized in table B3-5. Power consumption is essentially the same
for all systems, but the volume and weight data favor the coarse
external-internal IMC system, although not by an appreciable margin
compared to the flexible suspension system. In view of the high
cost of implementation and marginal volume and weight advantages
compared to the flexible suspension gimbal, the coarse external-
internal IMC is not recommended.

The spherical gas bearing secondary gimbal concept has sig-
nificant disadvantages in the volume, weight, and cost categories,
although not as costly as the coarse external-internal IMC system.
It is estimated that gas bearing supports will require about 3 500
lb of gas for a 160 hr mission, without scavenging. Exhaustion as
much as 7 lb of gas per hour at low velocities will result in a
strong contribution to the gas cloud surrounding the spacecraft.
For example, if nitrogen were used, the anticipated cloud might
be virtually opaque to radiation in the far ultraviolet and x-ray
spectrums. For these reasons, the spherical gas bearing is not
recommended as an approach for fine stabilization. However, the
spherical gas bearing approach might be subject to future investi-
gation for the system has advantages in that it is more mechanically
rigid than a gimbal system and is nearly frictionless, which may
be important factors in achieving 0.1 arc-seconds stability. Simi-
larly, the wide-angle spherical gas bearing mount is not recommended,
but due to its potential inherent performance advantages might be
subject to future investigation at the same time.
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Table B3-4. Estimated Cost of Image Motion
Compensation Subsystems

B3-52

INSTRUMENT COST OF IMC DEVELOPMENT
AND IMPLEMENTATION ($K)

PHOTOHELIOGRAPH 200

CSTA'TnSrn'DP TTT

a. If LST development
available 1 000

b. If LST development 1 500
not available

INFRARED TELESCOPE 700

XUV SPECTROHELIOGRAPH 1 500

X-RAY TELESCOPE 3 000

6 400 (or 6 900)



Table B3-5. Estimated Parameters for Candidate Stabilization Systems

STABILIZATION VOLUME RELIABILI
SYSTEM VOLUME m WEIGHT, kg POWER, WATTS COST, $ MTBF (HR)

Flexible Suspension 2.5 1 360 1 500 peak
Secondary Gimbal 600 000 15 000

500 avg

1 500 peak
Spherical Gas 4.8 3 000 3 100 000 20 000
Bearing Secondary 400 avg
Gimbal

1 500 peak
Coarse External 1.8 1 050 1 500 peak 6 880 000* 20 000
IMC Interior 500 avg

1 500 peak
Wide Angle Spherical 4.4 2 800 3 100 000 20 000
Gas Bearing Mount 400 avg

*Includes $6 400 000 for internal vernier implementation.
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The recommendation for the telescope fine stabilization system
is therefore the gimbal/roll ring system utilizing flexible sus-
pensions/rolling element bearings.

As mentioned earlier, the high energy array is deployed and
stowed in the same manner as the telescope complement; Depending
on whether CMG or RCS is used for orbiter stabilization, two levels
of hardware commonality are possible. The azimuth and elevation
coarse pointing/deployment hardware would be utilized for both
the high energy array and the telescope complement tube. Regard-
less of orbiter stabilization technique, the telescope complement
renqireo three axis fine sthilizatinn- Fnr the high energy arrayv

the flexible suspension gimbal system without a roll ring would be
required for a RCS stabilized orbiter configuration. For a CMG
stabilized orbiter, no fine stabilization would be required for
the high energy array. The effects on hardware commonality for
the telescope and array as a function of orbiter stabilization
are shown in table B3-6. These are estimates of the volume,
weight, power, cost, and reliability of combined gimbal-experi-
ment systems when used in conjunction with a CMG- or RCS-stabilized
orbiter. The differences result from the need for an additional
secondary two degree-of-freedom isolation system for the high
energy arrays when the orbiter is stabilized by RCS. This
additional system is not required for a CMG stabilized shuttle
orbiter.

A CMG shuttle orbiter stabilization system was selected
principally on the basis of experiment contamination. The
candidate RCS systems considered are less expensive than a CMG
system and their cost savings over a CMG system would more than
offset the apparent cost advantage of the CMG system shown in
table B3-6. But cost cannot be the only consideration; mission
and experiment objectives must take priority. The principal
disadvantage of a RCS system and the reason it was not selected
is that it is a major source of experiment contamination and
thus would interfere with the objectives of the ASM missions.
A CMG system by contrast is virtually contamination free and this
is the main reason for its selection.
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Table B3-6. Telescope/HE Array Estimated Parameters
Vs Orbiter Stabilization Technique

COMBINED TELESCOPE AND
HIGH ENERGY ARRAY

PARAMETERS

ORBITER
STABILIZATION

CMG

3
VOLUME m

3.9

WEIGHT, kg

2 300

POWER, WATTS

3 000 peak

500 avg

COST, $

800 000

RELIABILITY
MTBF (HR)

15 000
(telescope)

30 000 (array)

RCS 4.8 2 600 3 000 peak 15 000
1 070 000 (telescope)

850 avg ?0 000 (array)

w
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B3.4. SELECTED TELESCOPE FINE STABILIZATION SYSTEM DYNAMICS
AND PERFORMANCE ANALYSIS

B3.4.1. Telescope Shuttle Orbiter Dynamics - Assume that
the ASM telescope complement and the shuttle orbiter are both
rigid bodies and that these two bodies are free to rotate with
respect to one another. The telescope complement and shuttle
orbiter are attached through a set of three degree-of-freedom
gimbals. Neglecting the masses and inertias of these gimbals,
assume the telescope and shuttle orbiter are attached as shown
in figure B3-13 by a hinge point defined by the geometric center
of rotation of the gimbals. From the figure, the equations of
motion of body 1, the shuttle orbiter, and body 2, the telescope
complement are:

body 1
+4 d B1

FI+FH=ml 2 )R (130)
dt

dw
I -) -*+ + + - -+

Jl (dtR R+x 1 H 1 ' 1+ TH+lXFH (131)

body 2

2
F2-FHm2( dt )R (132)

4.
dw

J2'(dt )+2xJ2'w-T-TH+R2XFH (133)

where

FH is the reactive force transmitted through the hinge point

acting on body 1.

F1, F2 are the resultant forces acting on bodies 1 and 2,

respectively minus FH.

1H is the reactive torque transmitted through the hinge point

acting on body 1.
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T1, T
2

are the resultant torques acting on bodies 1 and 2,

respectively minus T
H.

W1 ' w2 are the rotational rates of bodies 1 and 2, respectively.

(Wlx' Wly' Wlz' W2x' °2y' W2z)

J1' J
2

are the inertia tensors of body 1 and 2, respectively.

(Jlx' Jly' Jlz' J2x' J2y' J2z)

ml, m2 are the masses of bodies i and 2, respectively.

2

d-t)R d2)R are the first and second time derivatives with
dR
'

(dt2)R
to the inertial XRYRZ

R
reference frame, respectively.

Adding equations 130 and 132,

F1+F2=mlt d2 R m2t 2 R (2)R (34)
dt dt dt

where

m=ml+m 2

Using the geometry shown in figure B3-14 an expression for B1
can be written in terms of B, R1, R2, m2 and m as follows:

mldl-m2d2 (135)

d2 equals

r1ml. 4

2 m2 1 (136)

From figure B3-14,

Rl-R 2' +d2 (137)

Substituting equation 136 into 137,

m1+ (ml+m2
i 2 1 1 i 2 12
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m2 + +

dl
~

-~(R1-R 2)d1 m( 1 2

Note that B
1
equals

BiB-i

Substituting equation 138 into 139,

B1 B- -R 2 )

Substituting equation 140 into 130,

+FH4- 2-

F H 1dt2 R

mlm2 2 (
m d 2 Rt 2) Idt

Solving for FH using equations 134 and 141,

4+ 1+1 . mlm2.d2 . .
FHml(Fi +F2) m (R1-R2)]R-I

dt

ml_
m 2-

-F -
m 1

"m m 2 _d 
Im2d--2(R1-R2)]

R
(142)

dR1
(-dt)R and

d R
1

( d2)R can be written as follows:

dR1 + +

(-d't) -lxR1

d R1 dwl + dR1

( ~t2R dtl ( dt R

dwl l 0 R)

- dtRl+ 1 1 W1X(WXR 1 ) (144)

Body 2 can be thought of as a moving part of body 1, therefore,

R2 is a variable with respect to body 1. Let

o'm2-W1 (145)
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w is the angular velocity of body 2 with respect to body 1.
-. 2+
dR

2
d R

2
(-) and (d 2)R equaldt(R dt equa

dR dR 

(dt ) R
=
(dt ml+W1XR 2

dR2 d2R
2

( 2 R( 2 )ml+
dw- -0.+ ),dR
dt-R2 "dxt d 'dt R

dR2 dII
2

w dt mand 2 )ml are the first

R
2
with respect to body 1, respectively.

(147)

and second derivative of
d+ 2-.-
dR2 d 2

(dt )ml and ( 2 )m2

dR2 +
(dt ml 2 (148)

d22 dw+ -- d2

2m) X' R2+wx (dt) ml

dw - . +
dt -R2+X (WXR2

)

Substituting equations 148 and 149 into 146 and 147,

d2)R equal d.
dt dR2

(dt )R=wxR2+W1xR2

. 2( d - 2-

dt
(dt2 )R T'-xR2+Wx(WxR2)+WlX(WxR2 )

awl +2 )

+ -'d'~2+2w1 -x x xR

dR2

(d- )R

(149)

and

(150)

(151)

Substitute equations 150 and 151 into equation 142 and let

m1m2
MI m (152)
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F
H

equals

H m F2 m 1 -M[--xR
1
+ 

1
x(l

1
xR

1
)

j--xR2-wx (wxR2
) -WX (wxR2)

dw
1 +

-' -xR2-2WlX(WxR2)] (153)

Su bat~ i tuto this VxMas a'Lu,. LJL r
H

r ±1 L*h LWU rULaLional equations

of motion 131 and 133,

dw ml m 2 4

l *dt +1 1 1 1 Tl+TH+R l [-mF 2 m 1

dw
+Mx (xR2 +M)+MM (d1X )+M( xR2)

--2Mwl(xR2)] (154)

J2dt .- 2 x2'2xT2-TH-R2X--F - -F 1

dW1 w --
-M(dw ̂ ' 

1
) -MW

1X(w1cxR1 )+M(d -xR2 )
.+

dw
+Mx(xR 2)+Mlx(w1XR22)+ (txR

2
)

-2Mwx 2(xR )2 (155)

In order to develop a linear model, all terms in the equations
dw dw

that contain products of W, 1w w2 dt' d and are eliminated.
he resulting linear rottional equations of motion areThe resulting linear rotational equations of motion are'
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dw- + m t -l -

owT+ CW
i

-> + LW

( )ct (R1 d-2 ( .I , 

I(n1 dt R2] (156)

dw2 + + m m

2 d -_ T2 -TH- -mR2XF2+ 2
x
0

1[ (R2R1 -2R2 1 tdt)R -]M[ (2 2 I 2) dt
dw, dwA dw

+ dw2 +
(R2 dt ) 2 2 (157)

Assume that the motion of body 2 does not soignificantly
effect the dynamics of body 1. This assumption is valid since
the inertias of the shuttle orbiter, body 1, are much lerger
than those of the telescope complement, body 2, and also be-
cause the relative motion between the orbiter and telescope
complement while the telescope complement's fine stabilization
system is operating will be small. The motion of body 1 can be
thought of as input to the dynamics of body 2. Assume that the

reactive torque TH is smlll (TH=0). The torque T
2
acting on

body 2 is assumed to equal

T2=T2-~2C (158)2 2D 2C

where

TDX ic the r sultan~t disturbance torques acting on body 2o

-2)

'£2C it tb h fine sab ii3ization cont:eol torque actinE Bon body

2. (T2C T2Cy, T2C)

The three daial rotational. qutione OS m:. n fo body 2

B3-63



dw dwii

I J +M(R2y +R2 )] dt 'TDx-T 2Cx+MR2xR2y dt

dw
2zdt (159)

+MR2xR2 zR

de dit'2x
[J2y+M(R x2+R2z2)] -y -T T +MRR2 d 2x

2y 2x 2z dt Dy T2Cy 2+M x R2y dt

d2
dw -z (160)

+MR2xR 2z dt

d2
+MR R L2

+R2y 2z dt (161)

where
m
1

m
T -T -- (R F R F )+ (R F-R F
Dx 2Dx m (R2y 2z-R2zF2y )+ 2yFlz-R2zFly )

dw dw dw
+M(RR+R R )- lx R ly -MR R dlz

lyR2y RlR2)y t MRxR2z t dt lx dt

m m2

Dy 2Dy m(R2z2x 2xF2z)+ m (R2zFlx -R2xFlz)

dw d dw
-MR R - +M(R R +R R )-ly -MR R lz

ly2x dt +M(Rlx2x+Rlz2z dt MRlyR2z dt

m1 m2

TDzT2Dz m (R2xF2yR2yF2x )+ m(R2xFly 2yFlx

dw dw dwlz

-MR lz d zR2y dt +M(RlxR2x ly2y dt

Figure B3-15 is a block diagram of this system. H x(s), Hy(s), and

H (s) are the transfer functions for the X, Y, and Z axis fine

stabilization actuators, respectively. Ex' ,y and E are the

rotational displacements of the X, Y, and Z axes due to the TDx,

TDy, and TDz disturbances.
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Figure B3-15. Block Diagram of Telescope Fine Stabilization System
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The Laplace transforms of C , y , and c as a function ofx z

TDx, TDy, and TDz are:

()G (s)[l_-M
2

R 2 
2

(s)G (s)]T (S)

+2xR2 x() (s) [ +HR2 2GZ (
S
) ] TD ( )

A's2

2
M 2r R2 G,-G Cs) [l+MR 2 y Gyz(S) ]TDZ (8)

+ '2x"2z x z 2yy Dz (162)

A's2

M 2 R 2yGY (s)G(s)) [ +MR2 2G (s) ]TD(s)

Cy (S)= S 2
~y Alh's2

Gy(s) [1-M2
R

2
x F

2
2Gx(S)Gz (s) ]TD (s)

~~~+ 2
A's

MRR2 G (s) G (s) [ +MR2x GX (s)ITDZ (s)
+ 2y 2z y z 2x x D(163)

A's2

MR 2 R2 G (S)GZ (8) [+MR2Y Gy (s) ]TD (S)
C (S)- 2As 2

+22Gy() 2y Zgz s2x2G( s ) (s] (s)

A's2

G (s)[1-M R2x R2 Gx(s)Gy(s)]TDz(s)
+ z 2x 2y G y Dz (164)

A,'s

where

A'-1-M R2x2 R2y 2G
x
(s)Gy (s)-M R2 Rz Gx (s)Gy(s)

-M 2R2y2 R2
2 G (s)G (s)-2M

3
R2 2 R2 y2 R2 Z 2G (S)G (s)G (s)2y 2z y z 2x 2y 2z x y z
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The transfer functions G (s), G (s), and G (s) contained in the

Laplace transforms of E' Ey, and c are

G (9) M+ 2 2 (165)
J2x+M(R2 y +R2 z )+Hx(s)

G (,s)w2 1 (166)
J2y +M(R 2x+R2z )+H (s)

z 2+2 (167)2z 2x 2y z

B3.4.2. Telescope Fine Stabilization Servo Design - The
transfer functions H (s), H (s), and H (s) shown in figure B3-15

x y z
correspond to the pitch, yaw, and roll telescope fine stabiliza-
tion actuators, respectively. The telescope fine stabilization
system utilizes flex-pivot suspension to stabilize the telescopes
in pitch and yaw and a servoed roll ring to isolate the telescopes
in roll. In this section, the actuator transfer functions H (s),

H (s), and H (s) are derived in order to perform a preliminary
y z
performance analysis of the system using the block diagram con-
tained in the figure. Note that Hx(s), Hy(s), and Hz(s) are the

transfer functions relating the control torque Tc as a function of the

telescope rotational acceleration w.

T (s)
H (s)= cx (168)
x

T (s)

H (s)= C (169)
y w (s)

Y

Tz (s)
H (s)- c (170)

z
w (6)

Figure B3-16 contains the mechanical networks used in this
report to describe the dynamics of the flex-pivot and roll ring
systems. The flex-pivots are assumed to be frictionless springs
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with a rotational spring constant K. The dynamics of the roll
ring are modeled by a mechanical rotational damper with a
damping coefficient B. This damper describes the damping action
of this system due to the friction between its various elements.
Also contained in figure B3-16 is the electrical armature winding
network describing the dynamics of the DC motor used to drive
these three systems.

Assume that the telescope center of mass is located at the
intersection of the three control axes; R2x, R2y, and R2z equal

zero. The system block diagram of figure B3-15 reduces to the three
independent pitch, yaw, and roll block diagrams shown in figure
B3-17. This figure is used to determine Hx(s), Hy(s), and H (s).

Assume that the inertia characteristics of the telescope complement
are:

J2 xJ 2 =l 900 kg-m2 (1 400 slug-feet2) (171)

J2x=800 kg-m2 (600 slug-feet2 ) (172)

B3.4.2.1. DC Motor Dynamics - The output torque of the DC motor
T (t) is proportional to the armature current ia

Tc (t)=KTi (173)

The loop equation for the armature winding shown in (c) of figure
B3-16 is

di
L a +r i +3 =e (174)a dt aa a m a

The back EMF voltage, e
m
, is proportional to the motor speed.

d8
e =K (175)em m dt (175)

Substituting equation 145 into 144.

di dO
L a +raia+K m=e (176)

adt aa mdt a (176)

B3.4.2.2. Flex-Pivot Dynamics - Using (a) of figure B3-16,
the dynamics of the flex-pivot stabilization system are

d 2 e
T (t)=K( m-0 )=J (177)

c in L dt2 (177)
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Using equations 173 and 177, ia and 0m equal

2

i = J L (178)
a KT dt2

d2 2

m K dt2 ,L . (179)
dt

Substituting equations 178 and 179 into 176,

L J K J d39
L

r J d 2e de
a m L a L LT( dt+ T>~ dt+~ +K (180)

KT K dt3 KT dt2 m dt a

Assume the armature inductance La equals zero,

3 2
K J d rJdO dO

d3L a L L
_ + 2 +K-j- =e (181)

K dt3 KT dt2 m dt a

From equation 181, the Laplace transform of eL equals

e (as)

L(S)= K J r J (182)
ms 2 + a +K )

Assume the armature excitation voltage ea is proportional to the

telescope body rate w and position E. The Laplace transform of
ea (s) equals K

~~~~~~~~Sa K

K (s) K (s) Kr ( s + K );(s)
e (s)- - r + r
a s 2 2 (183)

s s

K and K are the constant rate and position control gains, re-
r p

spectively. Using equations 177, 182, and 183, the transfer
T (s)

function ,c equals

W(s) KK K

T (s) K (
s+ K )

c = m r

=(s) 2K a (184)
W(s) 2 K a K

mYIT i
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From equation 184 Hx(S) and HY(s) equal

KK K

T (s) K
r x

( s K
P

x)
H (s)- cx - m rx

x Kr
WX(s) s[s + aI + K ]

m T J2x

K K

m rv

[s 2+ Kr K 
m,"r J2y

Kpx, Krx, Kpy'
with the X and

and K are the
ry

Y axes.

rate and position gains associated

T (s)
Using figure B3-17, assume the actuation systems Tx() and

Dx (S)

TcL have 5 Hz bandwidths. Since the inertias J2x and J2y are
DY(s)
equal and because R2x, R2y, and R2z are assumed to be zero, the

transfer functions G (s) and G (s) are the same. The transfer
x y

T (s)
function T cx- equals

Dx

Tcx(s) K'(s+Z)

TDx ) S3+Rs 2+( K +K')+K'Z

2x

where

(187)

KK
rx

K'K m2x
m 2x

K

K
rx

Kr
R= a

KmKr
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Let

sjW

T (s)
where w corresponds to the closed loop bandwidth of x) in

Dx
radians/second. (w=31.4 radians/second)

TCX(J) __ K (j _1+Z88)
T (i w)u3 (188)
TDx (I j[(K +K')w-w3]+K'Z--R

2x

cxSince w corresponds to the bandwidth of T ,
Dx

|T (j0) =0.5 (189)

The following relationship results from equations 188 and 189,

(K')2 (Z2+w2 )-0.5 (K +K')w-w(3 2+0.5[K'Z-R2] 2 (190)
2x

The above expression can be written as

(K') +aK'+b-0 (191)

where

2(ZRw2_ ~ +W)

2Kw4 K(w 2 6 R2 4
_(T-) -w -R w

2x 2x

Z +W2

In terms of a and b, K' equals

K' -a+ -4b (192)
2
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Assume the DC motor and flex-pivots have the following
parameters:

DC motor:

r =1.5 ohms
a

KT=0.52 ft-lb/amp-0.719 N-m/amp

K =0.72 volts/(rad/sec)
m

Flex-pivots:

K-6 N-m/rad

Also assume that the gain ratio Z equals 0.3. For a 5 Hz band-
width system, w equals 31.4 radians/second. The resulting values
of a, b, and K' are

2 3
a;22w l.97x10

4 2 2 6
b4w -R 2 =-l.27x10

K'-510

The rate and position gains K and K equal
rx px

KJ 2xK'
K m 2x-1.16x105 volts/(rad/sec)
rx K

K -ZK -3.49x104 volts/rad
px rx

Since HX(s) and H (s) are the same, the rate and position gains

Kry and Kpy for Hy(s) are

K -K -1.16x105 volts/(rad/sec)
ry rx

K -K -3.49x10 volts/rad
py px

The above gains Krx, Kpx, Kry, and Kpy completely define the trans-

fer functions H (s) and H (s).
x y
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lH We-X

H (s)-
Y

KK
rx(,+
K rm(s+

· _x_ m

K

Krx
rx

(185)
2 Kr K

m + K 2x

KK K

K K
m ry

2 Kr
81[s+ + s+

KmKT

(186)
K ]

J2y

For the general case where R2x, R2 y and R2z are not zero, the

transfer functions Hx(s) and H (s) are

K (8+ K)
KK K

H () m rx
X 2+ Kr K

s[s + K --- + 2 2
9[ m J2x+M(R2y+R2 z2

)

KK K

K K
H (8)' m ry

2 Kr
Y [s2+ a K

Km% J.

(193)

(194)

2y +M(R2x +R2 z )

From equations 165 and 166, the. transfer functions Gx(s) and Gy(s)

are

KrK2 a K
sfs + j- 1 s+ T" I

r- . .- KKT"iJ
CJ ykJ-

G (s)=

(195)2Kr K KK K
Jx SS2+ K+ i - ]+ r(9+ KX)

X2x m rx

Kr
2 a F s[8 + K+ , 1

JKm ? - .

2+ Kra K
J2y'[s ----- s+ --

K J2Y
-I]+

KK
ry (s+
m

(196)
K

r
ry
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where

2x J 2x+M(R2y2 + R 2 2 )

J 2y"J2y+M(R2 x +R2 z 2

B3.4.2.3. Roll-Ring Dynamics - Using
of the roll ring stabilization system are

d20L de
L

T (t)=J --- +dBt-L

'Using equations 173 and 196, ia equals

I Jia 
TY

d2 L
d 2 L

dt 2

B deL
T dt

Note that

0 =0
m L

Substituting the above expressions for i and
a

motor armature loop equation, equation 176

(c) of figure B3-16, the dynamics

(197)

(198)

(199)

o into the DC
m

de
L

+K )d e
m dt a

Assume L
a
equals zero.

raJ d2 L

K
T

dt2

r B de
L

+( +K )d
1K m dt a

From equation 201, the Laplace transform of eL equals

ea (s)

OL(s8) r J r B
a a+( +K )]
KT KTm
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KT dt3

L B
+( a

KT

r Jd
+ -a \ L

KT 'dt2

rB
+( a

KT
(200)

(201)
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Assume

r B
a =0.1 K

m

B then equals
KT

B=O. -mr (203)r
a

Assume the DC motors that drive the roll ring and flex-pivot
system are the same. Substituting the appropriate motor para-
meters into equation 203, B equals

B-0.0345 N-m/(rad/sec)

Just as in the flex-pivot case, assume that the armature
excitation voltage e is proportional to the telescope body rate

w and position E. e (s) equals K

r KK (s+ KP)-(s)

e (s)=a (s)- 2 (183)
s

Tc(s)
Using equations 183, 197, and 202, the transfer function

W(s)
equals

KTK (s) r ) ( s + KP
)T (s) ra K

c(a r B (204)
raJ KTraB

From equation 204, the transfer function, H (s) equals

KTKrz(s, B K
-)(s+ 9kT (s) r J K

z ()cz a 2z r

z s [s+ aN )]
aJ2z Kr m
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K and K are the rate and position gains associated with the
rz pz

Z axis stabilization system.
T (s)cz

Assume that the roll actuator system (s) has a 2 1Iz band-
TDzs

T (s)
I CZ

width. For R2x, R2y, and R2z equal to zero, ~ equals

,

cz 2z (206)

TD (.) 3 B +TK, __ K'_BZDz( ) 3 +( B + +K')s2+K,( B+Z)s+-
2z ra2z 2z 2z

where
KTK

MK T rz
raJ2z

K
Z= pz

K
tZ

To compute the gains Krr and Kpz, let B equal zero and

sLJW

TC (s)
where w corresponds to the closed loop bandwidth of T ) in

Dz

radians/second. (w-12.57 radians/second)

TC(Z ) K'(jAZZ) (207)

TDz (j) jK'w+(K'z-w 2 )

T (s)
cz

Since w corresponds to the bandwidth of T ,
Dz

10.5 (208)
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The following relationship results from equations 207 and 208,

(K')2+ 2K'Z K' (209)

Z2+w2 (Z 2+ 2

Let Z equal 0.3. K' equals

K'=12.3 (210)

The rate and position gains Krz and Kpz equal

K'J 2 r a

K-* 2z a -2.05x104 volts/(rad/sec)
rz "

3
Kp -ZK r-6.15xlO volts/rad

The 8ains K and K completely define the roll ring transferrz pz
function H z(s). r( K

r J K
2 Krz

H (s)- a 2z rz (205)

8 [S+ r JT (- +K )]
Z~aJ2z KT m

For the general case where R2x, R2 , and R2z are not zero,

the transfer function H (s) equals
z

KTrrz B K
1 + B -)(s+ pZK

H(s)- ) a J2z+M(R2x +R2y ) rz

s~s+ a
2z(S~m 2z rx 2y (211)

+ KT rB+K

ra[J2z+M(R2x 2+R2y 2)] ( T 

Using equation 167, G (s) equals
z

2 1% rB
a[s+ rT-J- K +K )

Gz s)" K (212)

2z s J r J(K Ka 2z rz
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where

J2z''J2z+M(R2x 2+R2y
2

)

B3.4.3. Telescope Fine Stabilization System Performance
Analysis - The linear dynamics of the telescope fine stabiliza-
tion system were derived in section B3.4.1. Figure B3-15 is the
resultant block diagram of this linear model. This model is
used to determine the gross stabilization capabilities of this
system and to determine the effects of the telescope center of
mass being offset from the intersection of the three stabiliza-
tion control axes. The results of this analysis should not be
considered to demonstrate the feasibility of this system. To
demonstrate the feasibility of this system, a more detailed model
would be required. This new model should include (1) the nonlinear
cross-coupling terms deleted from the model shown in figure B3-15,
(2) a CMG orbiter stabilization system with a detailed nonlinear
CMG model, (3) all analog to digital (A/D) and all digital to
analog (D/A) interfaces, (4) the bending modes associated with
the telescope complement and the shuttle orbiter, (5) more
detailed fine stabilization actuator models including such
nonlinearities as flex-pivot hysteresis characteristics, and
(6) a detailed disturbance model including shuttle orbiter induced
disturbances plus those generated by the telescopes themself.

Using the model derived in this report, the Laplace trans-
forms of Ecx, C, and cz, the rotational displacement of the

telescope X, Y, and Z axes, as a function of the three dis-
turbance torques TDx. TDy, and TDz are given in equations 162

thru 164.

It', t

C x(a)'

+

Gx() [l- 2R2 y2 R 2z2 Gy(s)G ( s) ]TDx(s)

As 2

A' 2

4 M2x 2 z Gx (s)G (s)[l+MR2yGy(s)T (162)(
A 2 (162)
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MR R G(s)G (2
E (8 2x 2yG x y s)(1HR2( zGz(s)]TD (s)

~~~y A's2Gy (s)[1-M R2 R2 C (s)G (s)]TDY (a)
+ y

A's

+ MR2yR2z y ()Gz (s)[l+MR2x Gx( )] Dz (163)
2A's

MR2xR2zGx (s)Gz (s) [+MR22 (s)TDx(s)
Cz(s)- a, 2 - Y

MR R G (s)G (s)[l+MR G (s)2 (S)+ MR2y 2zy (s)Gz (s)[+MR2x Gx (s)]TD (s)
+ y z y z 2x x Dy

A's2

+ z(s)[1-M R2 R2 Gx(s)G (s)]TDz(s)

where

A'-1-M R22R2 2G (s)G (s)-M R2R 2R G (s)Gy (s)

-M R2y R2z Gy(s)G
z
(s)-2M R2 R2y R2 G (s)G (s)G (s)

The transfer functions Gx(S), Gy(S), and Gz(s) are given in
equations 195, 196, and 212.

Kr2+ a JK]
SIS + j s i

r f-%- ' 2x
bX(.S)-

Gy(s)-
y

Kr
j 's[s2+ a K , K]+2x' K KT --- jK]+ K,(JK 

mT 2x m rx

Kr
srs + R-r+ - ]

[ Kr K KK K

J2y --- + K m- (-+ ]+ K

(165)

(166)

B3-81



2 [+KT raB[8+ r.i( ,(+K )]

G (8)- raJ2z _rT K (212)

J2z's2 lS+ raJ.( +Ki)(s+ gr (s+ ) kz)
2z( Yk ra i 2z Krz

where

J2x"J2x+M(R2y2+R2z2 )

3 'mJ +M(R +R 2J2y 2y +M(R2x +R2z2 )

J2z -J2z+M(R2x2+R2 2 )

The torque disturbance TDx, TDy, and TDz are

m m2

TDx 22D m(R2yF2z 2z2y)+ m (RyFlz -R 2 z Fly)

dw dw

+M(RlyR2y+RlzR2z) dt -MR y t

dw z
(2i3)-MRlxR2z dt (213)

mi m
2

TDyT 2Dy m R2zF2x-R2xF2z )+ (R2zFlx-R2xlz

dwlx dw
-MR R +M(R R +R lyly 2x dt (l2x x Rlz2z dt

dwlz (214)
-MRlyR2z dt

m1 
TDzT 2Dz

-

(R_2xF 2yF2x)+ m(R2xFly-R2yFlx)

dw dwdRR x d z
-HRlzR2x dt -MRlzR2y dt

dwlz
+M(RlxR2x+RlyR2y dt (215)
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Contained in table B3-7 are the telescope fine stabilization linear
model parameters.

The Laplace transforms c (S), E (S), and £ (s) can be approxi-

mated as follows:

G (s)

EX(s)= 2 )Dx (216)

G (s)
E (s) ,,TDy (s) (217)

y 2 Dy

G (s)
E (s)n Z (s) (218)

z 2 'TDz

described by R2 x, R2 y, and R2 does not significantly affect the

Cx(S) E (s) E£(8)
transfer functions x _ , __-and ' as long as the magnitude

TD(s) TD(s) TD(S)

of R
2

is small.

B3.4.4. Experiment Mass Motion Disturbance - Assume that the
experiment mass motion disturbance TD shown in figure B3-18 is applied

to both the X and Y telescope fine stabilization control axes (T2 D=

T2Dy=TD). TD is a projected worst case experiment mass motion dis-

turbance torque. The Fourier transform of TD equals

0.2

TD(O)=
/

TD(t) e-jtdt

1.10sin (0.025w) cos (0.175w)

0.37sin(0.075w) cos (0.075w)

0.37sin (0.075w)
+j [ l0l~sin 0(

1.10sin(0.025w)sin(0.175w) (219)
0.37sin(O.075w~cos(2 19)

c0
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Table B3-7. Telescope Fine Stabilization
Model Parameters

Mass and Telescope Inertia Properties

Shuttle Orbiter mass, m
1
=91x103 kg

Telescope Complement mass, m.=1.8x103 kg

Combined System mass, ms92.8xlO kg

J2x=J 2y=1 900 kg-m2 (1 400 slug-ft2 )

J2z' 8 0 0 kg-m
2

(600 slug-ft 
2

)

DC Motor Parameters

K,=0.52 ft-lb/amp-0.719 N-m/amp

K -0.72 volts/(rad/sec)
m

r "1.5 ohms
a

Flex-Pivot Spring Constant, K=6 N-m/rad

Roll Ring Damping Coefficient, B=0.0345 N-m/(rad/sec)

Actuator Rate and Position Gains

K -K -1.16x105 volts/(rad/sec)
rx ry 4

K rz2.05x10 volts/(rad/sec)
rz

K -K =3.49x104 volts/rad
PZ py 3
K -6.15x10 volts/radpz
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Plotted in figure B3-19 is TD(w). Assume that TD(t) is periodic

with a period of T seconds. This periodic disturbance TD'(t)

can be written as the following Fourier series

oT
new-

0O

where

o T

n 2T fnie

Assume the period of the disturbance TD'(t) is one second (Tu1 sec).

Table B3-8 contains the rms stability C , Ey. and E due to this

disturbance TD'(t) being applied to both the X and Y telescope

control axes. The desired telescope rms stability about the X and
Y telescope axes is 0.5 prad (0.1 sec). Note that the computed
rms stability about these axes due to TD'(t) is approximately

0.2 prad (0.04 sec). Although this stability is within the de-
sired stability of the system, it does not demonstrate the feasi-
bility of this system, it only demonstrates that this system
may be feasible.
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Table B3-8. RMS Stability of

to the Telescope
turbance TD'(t),

e , y , and C Due

Mass Motion Dis-

TDxOTDy=TD'(t)

RMS Stability (xlO- 6 rad)

Cx

0

0.035

0.043

0.054

0.038

0.020

0.009

0.005

0.004

0.003

0.002

0.213

y

0

0.035

0.043

0.054

0.038

0.020

0.009

0.005

0.004

0.003

0.002

z

0

-0

-0
-0
-0

-0

-0

-0

~0

0.213 -0

Harmonic

n

1

2

3

4

5

6

7

8

9

10

TOTAL

nwo
rad/sec

0

6.28

12.57

18.85

25.1

31.4

37.6

43.9

50.2

56.5

62.8

21anI

rad

0

0.017

0.027

0.034

0.034

0.033

0.026

0.022

0.023

0.024

0.023
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B3.4.5. Telescope Shuttle Orbiter Coupling Disturbance -
Note that all but one term in each of the telescope disturbance
torque equations TDX, TDy, and TDz, equations 213 thru 215, are

proportional to the components of the telescope center of mass

offset vector, R2. For the model derived in this report, if R
2

is a null vector, no disturbance originating from the shuttle

· dl4

orbiter due to F1 and dt is transmitted through the hinge.

Assume that the only disturbance torques acting on the
telescope complement originate from the shuttle orbiter. The
resultant telescope disturbance torques TDx, TDy, and TDz due to

the orbiter's translational force F
1
and rotational acceleration

d
1 1

dt are:
dt +dw m

T(F d 1 m 2 F
TDx(F' dt) m(R2yFlz- R2zF ly)

dw dw
+M(RIYP + x ly

+M(lyR 2y+R1 R 2 ) dt -MRlxR2 y dt

dwz
(221)-MRlxR2z dt

dwl m2 .
TDy (F1 dt m(R2zFlx-R2xFlz)

dwlx dw
-MRlyR2x dt M(RlxR2x +lzR2z) dt

dwl
-MR R -w1 (222)-MRlyR2z dt 

dw
1

m
TD (F1, d-t' -(R2 xFly -R2 lx

dwd dw
-MR R dlx -MR dly

-MRlzR2x dt -MRlzR2y dt

dw
+M(RxR+2x' yR2y ) dt (223)

B3-89



Assume that the modified ACPS system described in appendix
Al, section Al.l, is used to stabilize the shuttle orbiter. The
modified ACPS thruster characteristics are listed in table B3-9.
When one of the ACPS pitch, yaw, or roll thrusters is fired, both

dw
an orbiter rotational acceleration and a translational force

F1 is produced. The resultant rotational acceleration d- and

translational force F
1
are pulses with a pulse width equal to the

thruaser pulse duration, tf, therefore, the disturbance torques

TDx, TDys and TDz are also similar pulses. The magnitude of

dw
dt and F

1 due to firing a pitch, yaw, and roll ACPS thruster are:

Pitch control thruster:

dwlx dwlz
dt dt

dw Ft .
d:lY - IY =2.41x10

- 3 rad/sec (0.138 deg/sec)
dt I

YY

Flx-F-1.8x103 newtons (400 lbf)

Fly=Flz=O

Yaw control thruster:

dw dl

dt dt

dwlz F3
=d 2z =2.32x10-3 rad/sec (0.133 deg/sec)dt 2I

zz

Fx=F=1.8x103 newtons (400 lbf)

Fly=Fl z=
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Table B3-9. Modified ACPS Thruster Characteristics

Shuttle Orbiter Inertias:

I -1.41x106 kg-m2(1.04x106 slug-ft
2
)xx

I =8.22x106 kg-m2(6.05x106 slug-ft2)
yy

Izz=8.55x106 kg-m2(6.30x106 slug-ft2 )

I -I =I =0
xy xz yz

Engine Thrust Level: F=1.8x10 newton (400 lbf)

Engine Thrust Pulse Duration: tf=0.1 sec.

Vehicle Control Moment Arms:

pitch (Yv axis): aym-lm(36 ft)

yaw (Z
v

axis: z =2 2m(7 2 ft)

roll (X
v

axis): kx=22m(72 ft)

pitch coupling moment arm: kcMmllm(3 6 ft)
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Roll control thruster:

dwlx
dt

dw

dt

Fk
2X =1.41x10-2 rad/sec (0.804 deg/sec)

xx

FCM -3
-=2.41x10 rad/sec (0.138 deg/sec)

YY

F. =F =0
lx ly

3=F='1.8xlO newtons (400 lbf)

Assume that the center of mass of the telescope is offset
from the telescope hinge point along the telescope centerline
(R2x=R2y=0, R2z0O). The location of the telescope hinge point is

described with respect to the shuttle orbiter center of mass by

the vector R1. The components of R1 are approximately: R x=-2 9

meters, Rly=0, and Rlz =2.9 meters. Figure B3-20 is a plot of the

magnitudes of TDx, TDy, and TDz as a function of R2z due to firing

a pitch ACPS thruster. Figures B3-21 and B3-22 are similar plots
due to firing a yaw and a roll ACPS thrusters, respectively.

Note from figures B3-20 thru B3-22 that a small center of
mass offset, R2z, can produce a rather large disturbance torque.

This large disturbance torque due to firing the large ACPS thrusters
will significantly disturb the telescope fine stabilization system,
thus making it either impossible, or much more difficult, for this
stabilization system to meet it- desired stability goals.

The conclusions of this analysis are (1) the center of mass of
the telescope complement should be carefully mounted as close as
possible to the center of rotation of the telescope fine stabiliza-
tion system and (2) the shuttle orbiter stabilization system should
be designed so that it will not generate any large shuttle orbiter
rotational accelerations or translational forces during the ASM
telescope experimentation periods. These above recommendations are
designed to minimize the disturbance coupling between the shuttle
orbiter and the ASM telescopes.
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1.4

>§_0 - /---
IT DX'IT DZ =0.

0 1 2 3
R2z, TELESCOPE CENTER OF MASS OFFSET (CENTIMETERS)

Figure B3-20. TDX, TDyN TDZ As A Function Of Telescope Center

Of Mass Offset Due To Firing One Pitch ACPS Thruster
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2.0

.1

N

-I

0
0 '1 '2 '3

R2z, TELESCOPE CENTER OF MASS OFFSET (CENTIMETERS)

Figure B3-21. TDX, TDy, TDZ As A Function Of Telescope Center

Of Mass Offset Due To Firing One Yaw AMPS Thruster
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TDX
1.0

i / TDZ 1 0

!ITTzDY I

0

R
2Z, TELESCOPE CENTER OF MASS OFFSET (CENTIMETERS)

Figure B3-22. TDX, TDy, TDZ As A Function Of Telescope Center
Of Mass Offset Due To Firing One Roll ArES Thruster
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ASTPONOMY SnRTIE MISSION3 AUG 25 1972
COMMON SOPTTE LAB AND PALLET

OESCPT T ON WEIGHT

(POUNDS)

CENTER OF GRAVITY
X Y

(IN)

RADIUS OF SYRATION
Z KX KY

(TN)

PALLC'T STRUCTUR' _

CMG 1
CMG 2
CMG 3
SHUTTL ' IHMU
SUPPORTS CM, i
SUPPORTS CMS 2
SUPPORT C M 3
SUPPORTS TMU
CONTROL + TuO'JT BOX
TNVERTF I . HC4ATEP
TNVERT'R 2 + HEAfTE
INVERTER 3 + 4rFATF
CARL INS

3050.G00

420.00
420.00
420.00

15.00
30.00
30.00
30.00
2.00

20.00
57.00
57.00
57.00
15.00

+ SUPT
+ ;'J PT
+ SUPT

STARTLIZ4TION SYSTFM

443.9

355.0
405.0
460.0
360.0
355.0
405.0
460.0
360.0
360.0
315.0
405.0
495.0
405.0

1573.00

0. -37,3 47.5 153.2 159.9

0.
0.
O'.

-0.
0.

0.
O.

-30.0
10. 0
35.0
10.0

0.

-62.0
-62 0
-62*0
-45 0
-60.0
-60.0
-60 0
-41.0
-45.0
-82.0
-82.0
-82.0
-90 .0

12.2
12.2
12.2
3.5
13.0
13.0
13.0
2.5
3.0
6.6
6.6
6.6
1.0

12.2
12.2
12.2
2.5

13.0
13.0
13.0
2.5
5.0
8.5
8.5
8.5

40.0

12.2
12.2
12.2
2.5

13.0
13.0
13.0
2.5
5.0
8,5
8.5
8.5

40.0

1.6 -63.9 15.8 49.2 49.3

FWO BZTMUTH TA9LF
FWD AZIMUTH YOKy
FWf AZTMIJTH POINTING ACT
FWD 3FPLOfYMNT YOKE
FWfl IPLOYMENT ACTUATOR +Y
FWD 3EPLOYMSNT ACTUATOR -Y
FWO IFPLOnYMcNT LOCK +Y
FWO I=PLOYMENT LOCK -Y

FWn COMON 4MO'JNT 1062.00

AFT t7IM!JTH TA4LE
AFT 7 TMUT~H YOKc
AFT Z7IMUT4 POINTING ACT

289.00
396.00

35.00

315.1

515.0
515.0
270.3

0. -16.2 55.3 109.2 110.0

0. -5 1. 0
0. -14.4
0. -71. 0

KZ

289.00
396.00

35.00
194.00
30.00
30.00
44. 00
44. 00

270.0
270.0

313.0
400.0
400.0
531.0
531.0

0.
0.
0.
0.

72.0
-72.0
58.8

-58,8

-57.0
-1404
-71.0

25.0

10.0
10.0

14.2
38.5
4.0

66. 3
4,0
4.0

20.5
20.5

13.5
35.3

4*.0
40.3
2.5
2.9
3.0
3.0

12,6
27.6
3.0

77.4
4.0
4.0

20.5
20.5

14.2
38.5
4. 0

13.E
35.9
4.0

12.6
27.6
3.0



TASTON4Y SOqRTIE MISSIONS AUG 25
OOMMON S3)TTIE LAB AND PA. LET

OrSfRI DTTON WEIGHT

(POUNDS)

CENTER OF GRIIVITY
X Y

(IN)

RADIUS OF ;YR4TION
Z KX KY

(IN)

AFT 3EPLOYMENT YOKE
AFT IEPLOYMENT ACT'JATOR +Y
AFT IEPLOYMMNT ACTU4rTOP -Y
AFT 9!PLOYMENT LOCK +Y
AF-T IEPLOYMENT LOCK -Y

AFT CORMON MOUNT 1062.00 511.4 0. -14.5 54.2 79.9 81.7

ORO.NANWE PACK4, F

COMMON MIUNT eYSTE'

CONTROL + JJNCT qOXY FW
CONTPOL + JUNCT qOX MIn
INTERf4CE JUNCTION 90X
CAeL1N3 POWER

'CALJNS nATA

ELECTRICAL + nATA SYvTEM

20.00

214 00

20 00
20.00
10.00
25.00
20.00

5.00

360.0 -20.0 -'5O. 0

412.8

310.0

280.0
420.0
420.0

3. 0 5.0

-.2 -15.7 54.6 136.6 137.4

40.0
30.0

-70.0
35.0
35.0

-43 3
-43 0
-30 , 0
-33 0
-39 0

3. 0
3.0
4,0

15.0
15 0

5,0
5.0
6.0

150.0
150.0

5,0
5.0
6.0

150.0
150.0

397.9 23.9 -393.7 34.3 126.5 130.5

THERMAL INSULATION

COMMON SORr!IE PaLLTC

SORTIE L'AR 186 Il LING

130 00

7002.00

400.0 0. .- !55.0 45.0 65.0 55,0

.6 -3:7.0 48.2 132.0 1 34.6

0. 0. 77.0 68.0 68.0

1372

194.00
30.00
30.00
44.00
44..00

558.0
645.0
545.0
386.0
386.0

KZ

O.
72.0

-72 0
58.8

-58.8

25.0
25 ,0
25.0
10.0
10 . 0

66. 3
4,0
4.0

20.5
20.5

40.3
2.8
2.5
3.0
3.0

77.4
4. G
I..0

20.5
20.5

12688.00 90.0



°T1MONO' nRT E MATSSIONS AUG 5 197 2COMMON SOPTTE LAR AND oA.LET

GRANn TOTAL

lq690,00 Lnq 1 ASS o0,99868 LB-SEC2/IN

CENTrR nr
y =
f =
7=

;o4vrV T

1.2? Tr,
-13.17 Trf

AOrTUS OF GYRATION
KYX = 73.44 IN
KY = 187.34 IN
K7 = 187.16 IN

43 MfNT nF

TY=

T7=

Ln

M3HENT OF
Tr=
Ty=
Tr=

21099 lt UG- FT?
1491'2 SL UG-FT2
148lR? ; t1. UG-FT2

?530 ? Ln -SC?- IN

t'8 551 3 L - S'EC2-IN

'ROOUCT OF
PXY=

:!PIUCT r)c
DXY=

PY7=pyZ=

TrERTTA

216
-1143E

-55

TFERTrA

-137218
-65 4

SLUG-PT2
SLUG-FT2
SLUG -PT2

L 3-SEC2- TN
LR-SEC2- r4
L3-SEC2- IN

WE TGHT



ASTONmoMY SORTIE MISSIONS AUG 25
qnLAR DVaLOaDS ( PAYLOAD 1-2 )

)E SCRI PT T ON WEIGHT

(POUNDS)

CFNTER OF GRAVI
X Y

(IN)

TY RAOTLS OF SYRATION
Z KX KY KZ

(IN)

FWr) INNFR PILL RING
FWD 3UJTER pOLL QTNG
FWO TIMRAL .TNr,
FWn FLrV DlTNT/TArq rT 'Y
FWO ELEV PnTIT/STA3 aCT -Y
FWO 17'4 7 Tr 4ACTIJATOr) +Z
FWn 47M STA9 C-T'IATIr) -z
FWD )OLL ACTJATrno
FWO IMnrAL LlOfK +Y
FWD ;IMqAL LOCK -V
FWn YOYF _Or)ryK TTT(rT'lqA)

oN FWD PT0NT+COJNTCOL oLAT

FORWARn GIMP4L 1139q00 399.7 ,8 25.0 51.7 33.9 40.6

FW) STAR, T4CYKE
FWD STAP tA4CYIK
FWn ST4A TO A K=-
FWD ;T4P To4CKY7
FWn 3TAP TPj8CK=
FWO) SLTAP TRCK-
FWD ^T 'r PILT NV.

1

3

IU
cLECTR0"' IC

FWnO FFPENrC SVySTrM 152.00

FWn GIMPRL TIlITALLATTON

XUV SUG + YX-:A + 7noON)'

1231.00

4337.00

AFT TNNrc ot LL oTIN,
AFT )31TcP, ?LL T',ICr,
AFT TIMIAL TN'?,

210.00
306.00
235.00

.19.8 -1i,5 '4.8 47.1 45,- 147

1402.1

545. 0
64 .0
;4S.J]

.5 29,2 S1.5 36.5 39,0

0. 2i.0
0. 21.0 
O. 25. 3

i372

210.00
306,00
23F. 00
62.00
62.60
35,00
35.00
19.00
38.00
38.00
32.C0
67.00

400.0
400.0
400.0
400.0
400.0
400,0
+00.0
410.0
390 .
390.3
372,0
417.0

0.
0.
0.

63.0
-63.0

0.
0.

47.0
47.0

-47.0

0.
0.

25,0
26 0
25 0
25.0
253
85 * 0

-33.0

2 i* 0O

25 . 025 * 0
25 , 0
;.6. 0

44.0
49.5
r4.3

4,0
4.D
4.0
3,0

10.0
10.0
59.3
43.0

31.1
35,C
38.4
3.0
3,0
4,0
4.0
3.0

10.0
10.0
21. 
30.0

31.1

38.4

3.0
3.0

2.0

10.0

52.0
30 0

25.00
25.00
25.00
25. 00
15. 00
32.C00

F. 00

.+17.0
~17.0
411.0
423.0
425.3
426.0
420.0

-10 0
-20.0
12,0
12.0
8.0

-6.0
O.

7'8s 0

7' 5, 0

- 2'4 0
-19 .0

26593

4.8
4. 8
4.84.8
2.5
4.0

43.0

4.8
4* R

4*.8
4.8
2.,
3.0

30.0

4,8
4.8

2.5
3.0

30.0

44. 0
49.5
54.3

31.1
35,C
38 .'

31 1
35oG
38.~

398.2 -2.7 27.+ 31.J0 9.) 39,7



A4TPONOMY c;nRTIE MISSION; AUG 25 1972
SOLBA DAYLOnDS ( PAYLA43 1-2 )

DO-'SCPTPTION WEIGHT CENTER OF GRAVITY RADIUS OF SYRATION
X Y Z KY KZ(POUNDS) (IN) (IN)

AFT ELEV POTNT/sT4 A4CT +y 62.00 545,0 63.0 25.0 4,0 3*0 4.0AFT 'LEV 'OTNT/STAq 4AT -Y 62.00 545.0 -63,0 26.0 4.0 3.0 4,0AFT AT7M STA 4CT +y 3-.00 545.0 0. 85.0 4.0 4.0 3.0AFT A7M STAR ArT -Y 35.00 645,0 0. -33.3 4.0 4.0 3.0AFT 7OLL ACT 19 00 655*0 47,0 26.0 3.0 3,0 2.0AFT ;JTMRAL LOCK +Y 38.00 535.0 47,0 26.0 10*0 10.0 10.0AFT ;7TM9AL LOCY -Y 38.00 535.0 -47.0 25.0 10.0 10.0 10,0AFT YOKr LOCK CITT (GTMR'L) 32.00 517.0 0. 2560 59.3 21.t 52.0AFT CnTNT + CCT,4TPOL PLAT 67.00 562.0 0. 25*0 43.0 30,0 30,0
AFT GIQ4cAL 

1139*00 644.7 .8 25.0 51.7 33.9 40.6

.. 4AFT 3TAP4 To DKR 1i 25.00 562.0 -10.0 78.0 4.8 4.8 4.8AFT 'TA P TOACKTO 2 25.00 562.0 -20.0 75.0 4.8 4,5 4.8AFT STAR TDACKEo 3 25.00 656.0 12.0 '75.0 4.8 4.8AFT ST4A rTOACycC 4 25.00 668.3 12.0 75.0 4.8 4.5 i.8AFT TFLF COro TMU 15.00 5703 8. 0 -24.0 2,5 2.5 2,.AFT STAP TrACK'O ELFCTP?0%!IC 32.00 571.3 -6.0 -19.0 4.0 3.0 3.0AFT ARLTNr. 
5.00 565.0 0. 25.0 - 430 30.0 30.0

AFT ~RFcF' FI^e SYSTCM 152.00 66f4.8 - i1 4 .8 47,1 45 , 14.7

AFT CIMq&L TN.
T
ALLATTON 1?31.00 547*1 . 29.2 51.5 36.o 39.0

PHOTnHFLT Or ,P APH 2200.00 542*3 .3 26.4 21.7 61.4 59.8
COLAP PAYLarl ')T'lj~- TTPF:. 91 l, 1.0 g92.9 -1.1 27.4 36.4 130.9 131.0



ACT°OOlOy znRTrE MISSIONS AUG 25 1972
OLAPR D2VLrLDS a OYVLOAO i2 )

tG4Mn TOTAL

?P& 9 ,0n LnV, 4ASS 74.61763 LB-SEC2/IT

rcNTFR Of
y 

=
7 =

r,O V TTY

-. 3

Tk!

I'J
TLl

AOITUS OF GYRATION
KY = 64.55
KY = 217.30
K7 = 216,40

TJ rTI A
CL UG-FT2
Sl UG- FT2
sL U,- FT2

L"-SEC2-IN
L*-SrEC2-IN
Ln- EC2- IN

'ROOUCT OF
PXY=
DXZ=
DYZ=

'ROOUCT OF
PYy=

PY7=

I'ERTIA
-6

4013
-128

TIERTTA
-67

48 1 4
-1533

SLUG-FT7
SL UG-FT2
SLUG-FT2

L9-SEC?-IN
L:3-SEC - IN
Lq-SEC;?- IN

W- ITGHT

co

MIMCNT n c

TY=
*y=

T 7 =

IN
IN
IN

M34NfT lF TNDorTTA

TY= 7tlJ!A
T7= x4c4l~t



MASS PROPERTIES SUMMARY

Stratoscope III Payloads:

IR Telescope Payloads:

3AB, 3AC, 3AD, 3AE

4AB, 4AC, 4AD, 4AE

9



ASTRONO0Y SnRTIE MISSTON" AUG 25
ARRAY PAYLOAD COMMON IT'IS

noCSPrT TON WEIGHT

(POUN DS)

CENTER OF GRAFVITY
X Y Z

(IN)

RADIUS OF ;YRATION
KX KY KZ

(IN)

COMMON SORTTE LBa + DALLET
FWO GIMBAL INSTALLATION
AFT ELFV PT NT ACTUATOR +Y
AFt ELEV PTONT ACTUATOP -Y
AFT LAUNCH LnCKS (APRAY) +Y
AFT LAUNCH LOCKe (ARRAY) -Y
AFT YOKE L3rK FTTT (4APAY)

19690. 00
1291.00
3. 00
35. 00
37, 00
37. 0 
3,. 0 0

0

1972

208.9
402.1
545.0
;45. 9
635.0
635.0
i21.0

.2
.5

63.0
-63.0
47.0

-47. 0
0.

-13.2
28. 2
25 * 0
256 3
25. 3
25. 0
2 , 0

70.4
51.5

4. 0
4. 0

10. 0
10.0
59,3

187.3
36.5

3.0
3.0

10.0
10.0
18.1

187.2
39.0
4.0

10.0
10.0
50.8



ASTOONOMY CARTIE MISSTONS AUG 25 1972
a9.AY PAYLOAD COMMON TTEIS

GRAN) TOTAL

211570 0 LR e IASS 54.79833 LB-SEC2/IN

CENTE? OF

Y =

MOMFNT OF
TX=
TY=
TZ=

MIMENT OF
IX=
TY=
T7=

GRVIrTY
224.25 TN

.22 !T
-10.35 IN

TNEFTIA
22422 SLUG-FT2

166239 SLUG-FT2
165751 SL UG-FT2

INFRTTA
269059 Lq-SEC2-IN

1994851 L9-SEC2-IN
1989010 LP-SEC2-IN

RADIUS OF GYRATION
KX = 70.07 IN
KY = 190.80 IN
KZ = 190.52 IN

:RODUCT OF INERTIA
PXY= 12 SLUG-FT2
PXZ= 2666 SLUG-FT2
PYZ= 3 SLUG-FT2

3RODUCT OF [TERTIA
PXY= 141 L9-SEC2-IN
PXZ= 31986 LB-SEC2- IN
PYZ= 35 LB-SEC2-IN

WE'IGHT

I--



ASTQONOr)M S.nRTIE MISSION STPATOSCOPE III PAYLOADS
WTTH 4ARRAY T ROUF A8 (PAYLOAO 3AR)

GCANn TOT4L

WT IGHT i A SS 70.65869 LB-SEC2,'IN

C5 NTFR OF
= =
¥ =
7 =

M3 ENT nF
TXr=
TY=
T7 =

M3 MFNT OF

TY=
TZ=

N--
fl.

G AVITY
284,83 TN

.13 TM
-3,53 T"

TNFRTT A
25082 L UG-FT2

265691 SL UG- FT2
26504? SL UG-FT2

TNfOTT
300983 Ln-SEC2-IN

319909' LQ-SEC2 - IN
3180507 Lq-SEC2-IN

RADIUS OF GYRATION
KX = 65.27 IN
KY = 212.78 IN
KZ = 212.16 IN

'RODUCT OF TIERTIA
PXY= -129 SLUG-FT2
PXZ= 9454 SLUG-VT2
PY7= -7 SLUG-FT2

':RODUCT OF I4ERTIA
PXY= -1547 LB-SIEC2-IN
PXZ= 113448 LB-SiC2- TN
PYZ= -83 LB-SI-C2- IN

27213,59 Lin



.STPONOMY SORTIE MISSION STRATOSCOPE III PAYLOADS
WITH ARRAY BROUP AC (PAYLOAD 3AC)

G:IAND TOTAL

4ASS 78.13712 LR-SEC2/IN

C' NTR nFr-GRAVITY
Y = ,317.4 TlM
Y = .13 INI
7 = .11 TM

AOIUS OF GYRATION
KX = 63.95
KY = 226.52
KZ = 225.50

MDMENT O'
TX=
TY=

INFPTI A
26643 S;LUG-FT2

33435? SLUG-FT2
331359 SLUG-FT2

'RODUCT OF
PXY=
PXZ=
PYZ=

ITERTIA
-140

16788
-9

SLUG-FT2
SLUG-FT2
SLUG-FT2

MOMENT OF INErTIA
Tr= 319771 Ln-SEC2-IN
ry:= 012224 LO-SEC2-IN
I7= 3976:05 Ln-SEC2-IN

'RODUCT OF IERTIA
PXY= -1681
PXZ= 201456
PYZ= -110

LB-SEC 2-IN
LB-SEC2-IN
LB-SEC2- IN

WE IGCHT

IN
IN
IN

30191.00 Lq"



ASTQONOMY SORTIE MISSION STRATOSCOPE III PAYLOADS
WITH ARt.AY GROUP AO (PAY.OAD 3AD)

GR4AN TOTAL

2735i.00 LRS 4ASS 70.84129 LB-SEC2/1N

CENTER OF
¥ =

GRAVITY
285. 5 T4

.*4 TMt
-3T46 T"

RADIUS OF GYRATION
KX = 65.19
KY = 213.12
KZ = 212.48

MIMENT nrF
TX=
TY=
17=F_

INFRTI A
25085

263124
266521

SL UG- FT2
SL UG- FT2
SLUG-FT2

ORODUCT OF
PXY=
PXZ=
PYZ=

I4ERTIA
-171
9596
-10

SLUG-FT2
SLUG-F'TZ
SL UG-F'T 2

MIMFNT IF
TX=
TY=
TZ=

TNrQTIa
301022

3217L49
3198255

L-SEC2-TIN
Ln-SEC2-IN
LR-SEC2-IN

3ROOUCT OF
PXY=
PXZ=
PYZ=

I4ERTIA
-2051 LB-SEC'2-IN

115152 LB-SEC:2-IN
-126 LB-SEC'2-IN

W'ITGHT

IN
IN
IN



ASTRONOMY SnRTIE MISSION STRATOSCOPE III PAYLOADS
NITH ARcAY GROUP AE (PAY._OAD 3AE)

GI AND TOTAL

27793.00 LRs *ASS 71.99610 LB-SEC2/IN

CENTFP OF
X =
Y =
7 =

GRAVITY
290.86

-3. 0

TN
TN

RADIUS OF GYRATION
KX = 65.04 IN
KY = 215,43 IN
KZ = 214.79 IN

MIMENT fnc

rx=
TY=
T7=

M3 MENT OF
TX=
TY=
T7=

Ln

TNFRTTAt
2537S

278399
276742

INERTIA
3044 9qS

3340791
3320905

SLUG-FT2
SL UG- FT2
ct UG- FT2

LQ-SEC2-IN
LO-S C2-IN
Ln-SEC2-IN

'RODUCT OF IEPRTIA
PXY= -810 SLUG-CT2
PXZ= 10477 SLUG-FT-2
PYZ= -65 SLUG-FrT2

'RODUCT OF IIERTIA
PXY= -9721 LR-SEC2-TIN
PXZ= 125720 LR-SEC2- IN
PYZ= -775 LR-SEC2-IN

WE IGHT



A<TQONOMY <nRTIE MISSION IP PAYLOAD3
WITH ARRAY GROUP AB (PAY.OAD 4AR)

OCSCRTPTTON WEIGHT

(POUNDS)

CENTER OF GRAVITY
X Y Z

(IN)

RADIUS OF SYRATION
KX KY KZ

(IN)

IR TELFS0OPF aSSEM
BORE SIG4TED STAR TQACKER
STAR TRACKER ELECTRONICS
OPTICAL TELE + TMAGE TURE

IR TELESCOOTE + AUX UNITS

4383.00
25.00
10.00

106.00

4524.00

00.5
391.J
420.0
382.3

400.1

0. 25.0
-18.0 60.0
-6.0 -13.0
18.0 60.0

.3 25.9 34.2 43.3 43.0

ARRAY GROUD A
ARRAYGROUP R

962. 00
1210.50

597.9
639.9

-. 4 -12.1
-. 5 25.0

52.7 36.5 44.6
40.5 30.2 30.2

34. 0
4.8
1.0
2,4

43.4
4.8
1.0

43.4

1.0
10C.8



ASTDONOMY SnRTIE MISSION IR PAYLOADS
WTTH ARAY cROUF AB (PAYOAD 4AB)

Gt4ANn TTAL

27PC3.50 L9¢ lASS 72.14280 LB-SEC2/IN

CENTFQ O'
=

7 =

rPAVITY

.i7,77 TM
. II T"!

-2o7l TM

RADIUS OF GYRATION
KX = 65.66 IN
KY = 211.13 IN
KZ = 210.45 IN

M'MFWNT OY=
TY=
TY=
T7-

r IDTIA
2592?

257991
Lt UG- FT2
L UG-FT2

"L UG- FT2

'RODUCT OF T4ERTIA
PXY= -104 SLUG-FT2
PXZ= 9950 SLUG-FT2
PY7= 12 SLUG-FT2

MIMFNT nO TNrtTTA
TX= .7 10Ct
TY= ?215975
T7= 3195jqi

L'-SEC2-IN
L'-SEC2-IN
Ln-SEC2-IN

'>ODUCT OF I4ERTIA
PXY= -1242 L3-SEC2-IN
PXZ= 119399 LB-SEC2-IN
PYZ= 149 LB-SEC2-IN

WE TGHT



ASTQONOMY SnRTIE MISSION IR PAYLOADS
WTTH 4RRAY GROUP AC (PAYLOAD 4AC)

G,?ANn TOTAL

30764.00 LqS IASS 79.65123 LB-SEC2/IN

CENTFR OF
X =
Y =

rP4VITY
319.o2

.1'

.72

RADIUS OF GYRATION
KX = 64.23 IN
KY = 224.59 TN
YZ = 223.53 IN

TM
TN
TNJ

M3 MENT OF
Tx=
TY=
I7=

M3 ENT OF
TX=
TY=
TZ=

I NFRTIA
2739?

334914
33178A

TINYRTIA
328'03

4019207
3q81451

SL UG- FT2
SLUG-FT2
SL UG- FT2

Lq-SC2-IN
L9-SEC2-IN
Lq-SEC2-IN

'RODUCT OF IIERTIA
PXY= -124 SLUG-FT2
PXZ= 17102 SLUG-FT2
PYZ= 9 SLUG-FT2

'ROOUCT OF IiERTIA
PXY= -1486 LB-SEC2-IN
PXZ= 205228 LB-SEC2-IN
PYZ= 111 LB-SEC2-IN

WE IGHT



ASTRONrlMY SnRTIE MISSION IR PAYLOADS
wtTH KAPAY ~ROUP AD (PAYLOAO 4AD)

GRANn TOTAL

2'794. O0 LR' MASS 72.37541 LB-SEC2/IN

CENTER Oc
X =
Y =
7 =

GRAVITY
?88.02 IN

*21 Tol
^2.?t TI

{ADIUS OF GYRATTON
KX = 65.50
KY = 211.46
KZ = 210.76

MOMFNT O'
TX=
TY=
TZ=

MM CNT 0r
TX=
TY=
T7=

TNFQTIA
25859

?69507
2577?2?

TNF'TIA
310310

3234080
3212651

St UG- FT2
SL UG- FT2
SL UG- FT2

L' -SEC2- IN
LI-S C2- IN
Ln-E C 2- IN

ORODUCT OF
PXY=
PXZ=
PYZ=

I4ERTIA
-145

10087
9

DPODUCT OF I4ERTIA
PXY= -1745
PXZ= 121048
PYZ= 108

SLUG-FT2
SLUG-FT2
SLUG-FT2

L -SEC2- IN
LB-SEC2-IN
LB-SEC2- IN

WE TGHT

ko

IN
IN
IN



4STRONOMY SnRTIE MISSION IQ PAYLOAO0
WITH ARRAY cROUF AE (DAYOAD 44E)

GRANn tOTAL

28366.00 Lqc IASS 73.47022 LB-SEC2/IN

CENTER nOF
X =
Y =

GRaVITY
293,0 l TMH

-. 1e I '

-2.27 TM*

RAI)TUS OF GYRATION
KX = 65.35
KY = 213.71
KZ = 213.G1

IMF'NT OF
TX=
TY=

tX=
IY=
17=

C

261(6 SLUG-FT2
279635 SL.UG-FT2
277801 SL UG- FT2

313731 Ln-SEC2-IN
335563? LP-SEC2-IN
3333639 LQ-SEC2-IN

2RO0UCT OF IqERTIA
OXY= -782
PXZ= 10939

oYZ= -44

PRODUCT OF I[ERTIA
PXY= -9383
PXZ= 131268
PYZ= -527

SLUG-FT2
SLUG-FT2
SLUG-FFT2

LB-SEC 2-IN
LB-SEC?-IT4
L R-SEC2 - I NL B-5EC 2 - I N

WE- GHT

IN
IN
IN



MASS PROPERTIES OF GIMBALLED MASSES

GIMBAL PLANE REFERENCE

Axis Forward Aft

x 400 645
y 0 -0
z 26 26

c

21



oLn'!rlr4Ll.rOPH CN AFT GT'4BAt
Y4 MA rQfrTVFlN kY ROLL ACT'1rTnQ

P' Nn TntAL

W Tr.HT 7.00617 LS-SEC2/IN

CFr N? n r

Y =

Y =

7 =

ro \ TTY
S44. I

., t 
2 e7 , s

TO'
TI '

T^l

,ArTUS OF CGYATTI)N
KY = 28.05 IN
KY = F?.77 IN
K? = ;5,86 TN

Mr MCrtT nF

TY=
TV=

'7-=

TNcDTTA

4'qq c1 Ur.- FT2
ct UG-FT2
St UG- FT7

P.nLICT OF INERTTA
PXY= -1 SLUrs-F'r2
PX7= 7 SLtIG-Fr 2
OV7= -1 SL r,-F'T2

MnumNIT 9c

TY=

r7=

T DOTT A

? 7A c
? 1. Rreq

DP°),UCT OF TNFRTIA
PXY= -10C L-SFC?- TN
DY7= 8'0 LB-S.C?- rN
PYZ= -1' L9-SFC2'-IN

L'-S~ ?2- TN
L -sCC2-TN
I_ 'SF-o2-TN

thJ

?7ng, on ne-



o"4TOHcL'tPrPH ON bfT GITMAL
mSoo tJOrVFN PY AZ!MUTH STARTLIZATION ACTUATORS

GQ aNn TOTAL

,4ASS 7.R4794 LR-SEC2/IN

CrNTrQo n
Y =

M CNT n 

ry=
T7=

M4rNT nrc

Ty=

TV=

T7=

r.o4VTTY

.44 "'

4?.23 T,'

TNrcTTA 
'613 ';I UG-FT2

? 019 ' t. UG - FT2
tqt? 2;L UG- FT?

'?c; L. -SE,2- IN
? 4 3 6- L --SE C2- TN
2q4t4 1 n-CfC2- TN

RArnIUS PF GYRATTON
KX = 31.0; IN
KY = 55.72 IN
K7 = 54.07 IN

PPOnUCT OF TNERTTA
DXY= i SLIJUG-T2

PY7= 7 SLUG-FT2
PVZ= -1 SLUG-F T 

PPoOnUCT OF T:FPTIA
pXY= a LB-SEr2- IN
DYZ= 78 Lq-SEC2-~TN
PY7= -17 Lq-S'C?-TI

Wf T HT 0 10 a 0.0 LQq-



DnlTnqCLnroP pH N AFT GTM4RL
A!(.;cr noTVc'I Vy FLPVATTnOl POTNTT'tG + STA3ILITZATION ACTUTOPS

rAo n TnTlTL

Tl7l. n Lq:n 8.63792 LB-;FEC2/IN

C".jTCD nF
Y=
Y =
7 =

MrI- ii T Oc

TVY=

T7-

TV=
T7-

q I VTTY

c44.* Tv,
., 1 Tt'

yk19~rr

TMCOTT A

A 3 7 sl U6- FT?
l 'Aq t! Jr,- FT2

1rq, IV rU r2, -C T?

q,' '-- _ C- T I

DAnflT)J OF GVY6TON
KX = 34.02 TN
KY = F4.?6 IN
K7 = 9'?.54 IN

OOnqUCT OF tNERTIA
°YY= 1 SLUG-1TT2
PX7= 6 SLUG-IT2

VY7= -1 SLlJG--T2

)r"n'nlKT OF TNF'PTA
pXY= q LP-SEC2-IN
PXZ= 78 L¶-SEC2- IN
Dy7= -17 LR-F;'i: ?- IN

Wr Tr, HT

.P.



YUV SHG + Y-PAY + CORONOGPAPH ON FWD GIMqAL
4AS n%?TVFN BY ROLL ACTUATOR

cGRAn TnT4L

4842 .00 L an 4A.SS 12.54117 LB-SEC2/TN

rCrMTF Onr
=

Mn"uNT rc
TX=

Try=
T7=

Mnl4FNT nc
TX=
TY=

T7=

G°AVTTY
lqqgq TM

2'. L& T'

TNFQTTA
t 1 (;ZIG - Ft2
3449 :L UG-FT2
34 , Il. UG- FT2

TIPFDTT A

134?2 L"-SEC2-IN
4139 Ln-SEC2-TN
41tt4 L°-S. C2- N

RAlI US OF GYPATION
KX = 32.96 IN
KY = 57.45 TN
K7 = 57*053 IN

PROnUCT OF INEPTIA
PXY= 1 SLUG-FT2
PX2= 6 SLUG-FT2
PY7= 0 SLUG-FTZ

PROnUCT OF TNERTIA
PXY= 15 LB-SEC2-IN
DX7= 70 LB-SEC2-IN
PYZ= i Lq-SEC2-IN

L"



UIJV SH + X-RAY + CORONOG4PAPH ON FWD GIMBAL
"mSS 'JPTVFN BY AZTMUTH TAIUTLTZATYON ACTUATORS

GRANn TfnTAL

S1 7.o 00 Lq '4AS. 13.38295 LB-SEC2/IN

CNT'cR OF
7=
¥=

7 =

CGRVTTY

-2.14
77*73

T'

TM~TM

Q'AITUS OF GYRATION
KX = 34.24
KY = 56.27
KZ = 56.43

f HMFNT Oc
TX=
TY=
T7=

MnHVNT Oc
TX=
TV=
T?7=

TrCoTTA
13O 
153t

tc6ql
42368
4261 5

SL UG-FT2
SL UG- FT2
SL UG- FT2

Lq-SEC2-TN
Lq-SEC2-IN
Ln-SEC2- rN

PPOOUCT OF INERTTA
PXY= 4 SLUG-FT2
PX7= 6 SLUG-FT2
PYZ= -1 SL UG-F'T2

PROOUCT OF TNrRTTA
PXY= 43 LB-SEC:2-PT
PX7= 67 LB-SEC:2-IN
PYZ= -7 LB-SEC:2-TN

W.TrHT

IN
IN
IN



XUV SHG + X-RAY + COPONOGRAPH ON FWD GIMBAL
MHA OoQTVEN BY FLEVATION POTNTING + STAnILIZATION ACTUATORS

G.ANn TnT4L

WFI THT 5472.00 LPR IASS

CEMTFR OF nDAVTTY
= 3 99q2o TM

Y = -2o.O IT1
7 = 17 63 T '

MrMFNT fn T4NRTTA
TX= ii SLUG-FT2
TY= Sc9 'SLUG-FT2
T7- 36?' SL UG-FT2

nOMFNT OF TtFPT4A
TX= 1812t Ln-SEC2-TN
TY= 43qo? Lq-SEC2-IN
T?= 4351q LO-SEC2-IN

14.17292 LB-SEC2/IN

AODIUS OF GYRATION
KX = 35a.76 IN
KY = 55.66 IN
K7 = 55.41 IN

PROOUCT OF INERTIA
PXY= 4 SLUG-FT2
PX7= 6 SLUG-FT2
PYZ= -1 SLUG-FT2

PROOUCT OF INERTIA
DXY= 44 LB-SEC2-TN
PXZ= 66 LB-SEC2-IN
PYZ= -10 LR-SEC2-IN

,



STQATqCAoPF ITI ON FWO GIMBAL
MA. l. qTV. N BY ROLL ACTU4 TO

GAND TOTAL

4456.00 LPc 4ASS 11.54140 LB-SEC2/IN

CENTPR OF
V =
Y =

400.h' T
-.05 TM'

26.64 T%'

RADIUS OF GYRATION
KX = 26.81 IN
KY = 49.68 IN
K7 = 49.31 IN

MMEFNT OF
Tv=
TY=

T7=

Mn=FNT nc
! =
TY=
T7=

TNFPTIA
601

82q9
2R48q
280q9

SL UG- FT2
SL UG-FT2
SL UG- FT2

Ln-SEC2-IN
LP-SFC2-IR
LP-SFC2-TI

°RODUCT OF INERTIA
PXY= -1 SLUG-FT2
PX7= 6 SLUG-F'T2
PYZ=' -i SLUG-F'T2

PRODUCT OF INERTIA
PXY= -11 LB-SEC; -IN
PXZ= 72 LB-SEC'2-IN
PY7= -14 LB-SEC'-ITN

W TGHT

N



STQATOSIeqnoF III ,ON FWr GtIHMAL
M4S r;qTVFN BY AZHIMUTH STA9qTLZATION ACTUATORS

GRANmn rnT4L

47tl. 00 Ln c 4ASS 12.38317 LE-SEC2/IN

CFNTFD nr
Y =

GrJVTTY
400.67 TW'

*tt. t4 
26. q Pt

'ATI:US OF GYRATION
KX = 28.91 IN
KY = 48.78 IN
KZ = 48.51 IN

MnMFNT Oc
TX=
TY=
T?=

T'INOTA4
a6~

2Asq
2-4?9

MIWFNT IF TNPTTA4

YT= i10349
TY= 294q
T7= 29143

ct UG- FT2
et UG-FT2
SL UG- FT2

L" -SEC2-IN
LO-SEC2-TN
Lq-S C2-TN

PROnUCT OF INERTIA
PXY= t SLUG-FT2
PXZ= 6 SLUG-FT2
PYZ= -1 SLUG-FT2

PRODUCT OF INERTTA
PXY= 10 LB-SEC2-IN
PXZ= 72 L9-SEC2-lN
PYZ= -15 LB-SEC2-IN

w%0



?TPATOSCPF IITI ON FWn GIMRAL
4A<; I)TVcN BY ELFVATTON PnINTTNG + STABILIZATION ACTUATORS

G,,a'ln tftTL

9085.00 LRr m4SS 13.17315 LB-SEC2/IN

Cr7Trp nF

?rfMVMIT nr

TX=
TY=

0

TX=
TY=
T7=

r,P4VITY
400o6r53 Im

1il TM!
?6.'S6 Ip'

T9F'TTA
iO6c S .UG-FT2
2 R3 3SLUG- FT2

TN'PTIA
12774 Lo-SEC2-TN
309q7 Lq-SEC2-IN
30042 Ln-E C2-IN

.ADIUS OF GYRATION
KX = 31.15 IN
KY = 48.5t IN
KZ = 47.76 IN

PRODUCT OF INERTIA
PXV= 1 SLUG-FT2
PXZ= 6 SLUG-FT2
DYZ= -i SLUG-FTZ

PRODUCT OF INFRTIA
PXY= 10 LB-SEC.2-IN
PXt= 72 LB-SEC2-IN
PYZ= -15 LB-SEC2- IN

W Tf' HT



T° TELcrCOPE ON FORWARn GIMBAL
M4Sa ORIVEtI BY POLL ACTUTOP

iGRANf TnTAL

;029.00 LaR` 4ASS 13.02551 LB-SEC2/TN

CrNTFr nc
Y =
Y =
7 =

G 4AVTTY
400.1? 'r:t

·?73 TN
27. c, TN

RAOIUS OF GYRATION
KX = 35.59
KY = 42o76
KZ = 42.09

WMMFNT OF
TY=
TY=
T7=

WnMFNT nF
TY=
TY=
r7=

TN TTl A
137~
tqS~
I g ?t

TNCPTT A
164qq
21A18
23074

tL UG- FT2
SL UG- FT2
SL UG- FT2

LO-SEC2-IN
Ln--SEC2-IN
Ln-SEC2-TN

PROOUCT OF INERTIA
PXY= -8 SLUG-FT2
PXZ= -12 SLUG-FT2
PYZ= 10 SLUG-FT2

PRODUCT OF INERTIA
PXY= -96 LR-SEC2-IN
PXZ= -147 LB-SFC2-IN
PY7= 117 LR-SEC2-!N

WF TGHT

IN
IN
IN



YQ TLfeSOODF ON FORWARn GIM1BA
m4S nRfIVEN oY A7.MUTH STAILPIZATION ACTUATORS

GRANln TOTAL

q14.O00 LPt 13.86729 LB-SEC2/TI

CNJTR OF

7 =

nO]MFNT 0r
TX=
TY=

G6VT TY

'Q V ' I T r

.09 TFI
27. ? i

TN'Q TT
i54S I.UG-FT2
206S SLUG-FT2
2013 SLUG-FT2

RAOTUS OF GYRATION
KX = 36.57 IN
KY = 42.29 IN
KZ = 41.74 TN

PPODUCT OF INERTIA
PXY= -6 SLUG-FT2
PX7= -12 SLUG-FT2
°YZ= 10 SLUG-FT2

MnMrNT Or

TX=
Ty=

T7=

TNCPTTA
18450 L"-SEC2-IN
2479S Ln-SEC2-Ir
?41St LP-SEC2-IN

PoDPUCT OF TNERTlA
PXY= -74 LB-SEC2- IN
PXZ= -147 LB-SEC'- IN
PYZ= 115 LB-SEC!- TN

fr Tt,HT



TP TFLrSCOPE ON FORWARn G!MBAL
MHi ODRTVFN BY ELEVKTTON POINTtNG + STABILIZATION ACTUATORS

rGRANn TOTrL

t* TGHr T c~'q9,0n L*P 4ASS

PENTrp nor Kr,?VTTY
Y = 400,.'6 TN
V =- . Tm

7 = 27.?1 TN'

MW!rNT O F T4rTTA.
TYX= lt qI UG-FT2
TY= 71q4 SLUG-FT2
T7= 20Rq SLUG-FT2

14.65727 LB-SEC2/IN

RADIUS OF GYRATION
KX = 37.83 IN
KY = 42.38 IN
KZ = 41.35 IN

PRODUCT OF INERTIA
PXY= -6 SLUG-FT2
PXZ= -12 SLUG-FT2
PYZ= 10 SLUG-FT2

qF1mrT nc

TY=
TY=
T7=

rTMrcOTTr
209Z 
2k 3?9
Zs oc;6

L '-SE C2-TN
Lq-SEC2-TN
Ln-SEC2-I T

PPODUCT OF INERTIA
PXY= -74 LR--SEC2- TN
PXZ= -146 LR-SEC2-IN
PYZ= .15 LB-SEC2-IN



APPENDIX C2

MASS PROPERTIES - TELESCOPE AND ARRAY GROUPS

PHOTOHELIOGRAPH
SOLAR GROUP

XUVW SPECTROHELIOGRAPH
X-RAY TELESCOPE
CORONAGRAPHS
MONITORS

STRATOSCOPE III
IR TELESCOPE
ARRAY GROUP A
ARRAY GROUP B
ARRAY GROUP C
ARRAY GROUP D
ARRAY GROUP E

1



MASS PROPERTIES DATA
TELESCOPE GROUP 1 - PHOTOHELIOGRAPH

i riE
UT.
(LS)

X
(IN)

Y
(IN)

Z
(IN)

I

Iox 2
(LB IN )

r-o¥V(LB N'
(L3 IN-)

I loz,
(I," T'! \ t

TELESCOPE 

PRIMARY MIRROR 475 50 0 0 105,000 52,500! 52,500

MOUNT & BULKHEAD 80 60 0 0 23,100 11,550 11,550|

TRUSS SHELL ETC 750 -25 0 O 43,200 2,220,00012,220,000

SECONDARY MIRROR 30 -105 0 0 374 1,390 1,390

SEC. MIRROR SUPP. 20 -107 0 0 38,000 19,000 19,000

RKT-u-14l urN KING 20 0 0 0 11,520 5,760 5,760

DOORS 50 -120 0 0 14,400 7,2001 7,200

INSTRUMENT INST.

HOUSING 295 -20 0 35 62,000 820,000i 900,000 ;

FOLDING MIRROR 25 -95 0 15 10,000 5001 500
, .

BEAM SPLITTER 40 38 0 35 85,000 1,700 85,000

FILTERS 20 30 0 0 250 3201 320

IMAGE DISECTOR 25 20 3 38 310 420 310 

VIDICON DETECTOR 25 20 -3 38 310 420: 310 

SPECTOGRAPH 115 -65 10 38 7,000 180,0001 180,000

H-ALPHA CAMERA 25 54 -14 38 310 4201 310

BROADBAND CAMERA 25 54 -7 38 310 4201 310 

UNIVERSAL CAMERA 25 54 3 38 310 420) 310

ELECTRONICS 155 L -16 O 33 4,2040 336001 35,200I ______

VEIGHT 2.200

X C.G. -5.7

T C.G. .3

Z C.G. 11.9

2 INERTIA
POUNDS IN

lox 1.039,784.4

Toy 8,307.761.1

loz 7,874,075.3

2

SLUG FT'

224.4

1793.1

1699.5

RADIUS OF
GYRATION

Kx 21.7

Ky 61.4

Kz 59.8

r. -�3



MASS FPOPERTIES DATA

TELESCOPE GROUP 2 - XUV SHG + X-RAY + CORONAGRAPHS

ITEM

I-

(TZ.)IX
(IN)IY (I)

(1N) (IN) ITTox ,
(LB IN-)

Page 1 of 2
______- - ' 

Ioy _ -

(LB IN )!
T[Qz .

¢(B U N-%

!STRUCTURE ,

-CYLINDER 668 -30 0 1,090,00( 2,540,00t 2,540,000i
FRONT RING 16 -125 0 0 26,00 13,000 13,000O
AFT RING 11 65 0 0 17,80 8,90Q 8,900j
CENTER FRAME 73 -37 0 0 164.00 86,50Q 86,500
AFT BULKHEAD 64 65 0 0 56,30 28,15( 28,1501
FRONT BULK 6 DOORS 103 -126 0 0 91,00( 45.50( 45,500
VERTICAL PARTITION 138 -30 3.5 0 71,60 487,00( 413,000
DIAGONAL PARTITION 84 -30 17.5 5 1610 256,00 250.000
ATTACHING FITTINGS 18 -25 0 0 3,33 1,66 1,665

INNER & OUTER CORONAGRAPHS
IC 530 -46 -29 2 17,001 750,004 750,000
__OC 351 -63 13.5 -21 35,10 276,00( 276t000
FILM CAMERA 22 22 -29 2 36( 30 300
FILM CAMERA 2 -83. -21 36f 30( 300

XUV SHG 
INSTRUMENT 945 4 21 O 230,00Q 1,590,001 1,510,000.
FILM CAMERA 22 -61 21 -10 366 30 300
COLLECTING OPTICS 33 55 21 1.5 5 30 3
ELECTRONICS 10 52 21 -20 10 10 100_

X-RAY TELESCOPE

TELESCOPE 450 -10 -12 20.5 230,00 1,590,000 1,510,000
GRATING 25 -60 -12 20.5 80 406 400
FILM CAMERA 40 45 -12 20.5 70 60 600
CRYSTAL SPECTROMETER 40 45 -12 20.5 70 60 600

PROPORTIONAL COUNTER 15 40 -12 20.5 22 229 2201
PM DETECTOR 20 -80 -12 20.5 30 30 3 300
H-ALPHA SLIT 10 20 -12 20.5 15 15Q 150j
ELECTRONICS 0 5 -6 30.0 00 100 1,000

SUPPORT UNITS _ __ 0 r_ ,2_0
H-ALPHA TELESCOPE 124 -82 11 30 3,10 37,204 37,2001
XRT MONITOR 100 -94 -6 35 1,80$ 19.00Q 19,0001

WE IGE-

X C.G.

2 INERTIA
POO IN

RADIUS OF
GYRATIONSLUG FT'

Iox Kx

Y C.. -

Z C.C.

Ioy

Ioz

Ky 

3

Kz

I T_r-
I I q~~~i

--
I



MASS PRD2tRTIES DATA

TELESCOPE GROUP 2 - XUV SHG + X-RAY + CORONAGRAPHS

ITEM
WT.

(LBS)
(x)I(IN)I

Y Z
(IN) (tN)I lox I

(LE IN )
Toy II

(LB !i- I

Pange 2 o' 2

107 , I

FYNE SUN SENSOR 23 119 -22 -8 400 300! 300

FINE S . S CONROL 31 57 -12 -25 500 400! 400

CORRELATION TRACKER 120 -85 -34 -8 2,200 43,6001 43,600

XUV MONITOR 100 -34 12 -30 1,700 26,000ool 26,000

XUV MONITOR 24 57 -12 -20 400 400i 400

CORONAGRAPH MOUNT 20 -53 -22 -8 4,000 2,000 2,000

t T 1'T rl A1T 'rTW, 15 5 0 0 1,0 0
. - - iu u16,000 16,000

1~~~~~~~~~~~~~~~~~~~~~~~~~~
I

_ _ _ I I
_ _ _ _ _ _ _ _ _ _ _ I _ _ Ii

...... 
_F ... r .!

_ _ __ _ __ _ _ _ _ _. _

r_ _ I_

.___ 4 1

I
~. -

[ L~~ . .

M[GT 4.337

XC.G. -26.8

yT,.G. - 2.7

Z'eCG 1.4

POUNDS IN2

Iox 4,171,562

Ioy 15,291,680

Ioz 15,480,526

INERTIA

SLUG FT'

900.4

3,300.6

3,341.3

RADIUS OF
GYRATION

lKx 31.0

Ky ___59.3

RKZ _59.7
Kz

4

. I ·i-~~ ~~~I I I 

i
I

Iq



MASS PROPERTIES DATA

TELESCOPE GROUP 3 - STRATOSCOPE III

111K IWT. Ti I - I I

X y
(IN)

z
(I>)(LBs)T (IN) I Tox ,

(IL IN')

Toy -f I

(LOir N s I-- - ?1 i(LB IN-) 1, -- - , I

CYLINDER~ 785 -54 0 0 870.000 1.090,00011.090,000

PRTMARY MIRROR - - -485,73 7 O 167.000 85.000 85000

PRIRY MIRROR MiOUNI 126 -3 0 0 102.000 51,000 51,000i

CENTER BAFFL . 17 -28 0 5151480 1,480

_SEC. MIRROR ASSEM 40 -103 0 0 -10 070 162 700

SEC-. MTRROR SUPP. 25 -100 O 0 7.800 2.800 2,800 

_EXTENDABLE SHIELD 164 -123 0 0 224.000 2250,000 

INSTRUMENT COMP 596 18 0 0 430,000 400,0001 400,000

PRIMARY REF. RING 110 0 O O 106.000 53 000i 53,000

DOOR & MECHANISM 74 -104 0 0 35,600 17,8001 17,800

INSTRUMENTS 1541 35 0 0 111 52000 52000 52,00

C.G FOR EXTEN)ED SU SHI LD 

RETRACTED MOMENT -4.1 X 395 = 6,19

SHIELD SHIFT 67 16 = -0,98 

DOOR SHIFT 10 X 74 = 74

_ 7,827

IETD 2 2 - 1-

C.G. EXTENDED -27,827 3,951 = -7.0 !

..__________________________________ - _- . -_ .___________ . _ | '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~R IU =C , 

POUNDS 1 2

Iox 2,109,535

Ioy 10,300,300

Ioz 10,300,300

INERTIA

455.3

2223.2

2223.2

RADIUS C.'
GYRATICN

Kx 23.1

Ky 51.0

Kz 51.0

5

WEIGHT 3, 951

X C.G. -4.1

YC.G. 0

Z C.G. O

I w

I iI



MASS tROPERTIES DATA

TELESCOPE GROUP 4 - IR TELESCOPE

ITEM IW.
(0S)Ix r I-

Y
(IN) I (IN) (12N.4

z IOnX ,

(LB IN-)

Page 1 of 2
J T

lov I
(TLB TIN-) 

L3 ) i
(-T3 -i !

A BULKHEAD 50 O 1.0755000 536000 536,000 i

ZSTR~HENT . 229 34 0 11O900i 11,900

MECHANISM 50 32 -12 0 3200 30400 30,400

MDLE BULKHEAD 100 22 0 0 364,000 182,000i 182,000

PRIMARY MIRROR 665 13.7 0 0 1.470,0001 735,000, 735 000

Y LINDER 2169 -11.2 O 0 1,353000 3,32000013,320,000 

IFTb RIN& FRA7MEu i19 47 0 0 11,900 5,9501 5,950 

SPLICE FRAME 43 22 0 0 27,900 13,9501 13,950 ,

FWD RING FRAME 22 -41. 0 0 13,8004 6900 6,900 

FRONT FRAME 25 -73 0 0 15,600 7,800 7,800

LONGERON S 14 -11. 0 0 8,700. 12,550! 12,550

INSULATION SUPPORT 45 -53. O 0 49,0001 33,0001 33,000i

AFT SUPPORT RING 150 0 0 0 240,0001 120,0001 120,000,

FWD SUPPORT RING 80 -42 0 0 81,6001 40,800: 40,800

FWD. SUPPORT TUBES 120 -21 0 0 26,0001 28,5201 28,520

SHUTTER DOOR 30 -60 0 0 8,600| 4,300 i 4,300 

TOWER & MECH 10 -55 0 0 45 2701 270 

| COVER DOOR 49 -82 0 0 19,3001 9,650' 9,650

METEROID CYLINDER 112 -10 0 O 191,000o 270,000
i

270,000

METEROID BULKHEAD 18 58 0 0 15,900 7,950' 7,950

METEROID FRAME TIE-IN 30 0 0 0 53,000 26,500! 26,500

METEROID FRAME BULK- 15 58 0 26,500 13,250. 13,250

WEIGHT

X C.G.

Y C.G.

Z C.G.

2
INERTIA

POUDD IN

Iox

Ioy

Ioz

RADIUS OF
GYRAT IO"NSLUG FT-

Kx

Ky

Kz

6

.---

I
i

I

i
I



M.ASS PROMrTIES DATA
TELESCOPE GROUP 4 - TR TELESCOPE Page 2 u:;: 2

, wT. x Y z :ox 2 oy, I Ioz 1 i
0 X ITEM (LBS) W!l) (TN3 (IN) (LB IN ) (LB IN-| (B,3 IN"- I
t~.43 3 30 0'

SECONDARY MIRROR 38 -42 0 0 300 300 300

INSTRUMENT COOLING 135 34 0 0 6,750 7,000 7,000
.i,. _

HELIUM 22 34 0 0 1,000 1,000 1,000

.~~~~~~~~~~~~~~~~~~~____ . _ _ __ 

. .' , I

· _. I iiiii

I~~~~~~~~~

_ _ _ _ _ _ _ _ _ I LI
_ ___ __ __ 

I L~~~~~~~~~~~~~~~~~~~~~~

. _ _ _ _ _ _ _ _ __ __ ._ _ I _ _

.. _ _ _ __ _ _ _ __ _ _ _ _ __ ___ i__ _ 1
_ _ _ _ _ _ _ _ i i i _ _ t I

_ _ _ _ _ _ _ _ _, _ _ _
,. _ I

= _ _ _ I ~~~~~~~~~~~~~~~~~~~~I {.

WEIGHT 4,383

X C.G. .5 _

YC.G. 0

Z C.G. 0

POUNDS J

Iox 5,087,711

Ioy 8,280,480

Ioz 8,276,877

INERTIA
SLUG FT-

10981

1787.2

1786.5

RADIUS CF
GYRATION

Kx 34.0

Ky 43.4

Kz 43.4

7



MASS PRDPERTIES DATA

ARRAY GROUP A - WIDE COVERAGE X-RAY

W. X Y Z Iox 1oy o Toz |
rTEK (m1) (IN) (I (IN) (LB INf) (LB IN-) (LB iN-')

_ i

ARAY ASSEM, (1) 253 -20 41.5 31 168000 168,0001 168,000

,ARRAY ASSEM, (2) 253 -20 41.5 31 168,000 168,000: 168,000

DEPLOYMENT MECH (1) 170 0 41.5 -22 71,000 71,000 3,060

DEPLOYMENT MECH (2) 170 0 41.5 -22 71000 71000 3060

CENTRAL DATA PROCESSOR 55 -10 0 -34 1,320 1,320 6,250

CONTROL & DATA PACKAGE 20 -10 -20 -36 180 180 500

PROTON FLUX DET. (1) 18 -23 20 8 200 1001 1001

PROTON FLUX DET. (2) 18 -23 -20 8 200 100 100

CABLING 5 -5 0 -40 2,500 100 2,500

_ _ I _ _

___ _= F'I
____________________________ _______ ________ I ________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WEIGHT 962

x C.G. -12.1

Y C.G. - .4

Z C.G. 5.9

Iox

loy

loz

2 INERTIA
POUm IN

2.678.466

1,282,821

1,917.039

SLUG PT
2

578.1

276.8

413.7

Kx

Ky

Kz

RADIUS OF
GYRATION

52.7

36.5

44.6

8



MASS UDPERTIES DATA

ARRAY GROUP B - NARROW BAND SPECTROMETER/POLARIMETER

mM I 4e XI IY(IN) z
(IN)I lox 2

(LB IN )
IcBy 2I

(LB TN-)
Ioz 7

(LB IN-'

- - - - ~ ~ 3 465.0001

SU~PPOT FRAME .]E 420 0 Q 0 | 990.00C 536.00t 465.000

DC 59; -12 33 33 4.28 412 4.120

DETECTOR 2 59.5 -12 0 33 4,28 4,12 4,120

DETECTOR 3 59.5 -12 -33 33 4,28 4,12 4,120

DETECTOR 4 59.5 -12 33 0 4,28 4,12 4,120

DETECTOR 5 59.5 -12 0 O0 4,28 4,12 4,120

DETECTOR 6 59.5 -12 -33 0 4,28 4,12 4,120

DETECTOR 7 59.5 -12 33 -33 4,28 4,12 4,120
DETECTOR 8 59.5 -12 -33 4,28 4,12 4,120

DETECTOR 8 59.5 -12 -33 -33 4,280 4,12 4,120
DETECTOR 9 59.5 -12 -33 -33 422 ,2 ,120

CENTRAL DATA PROCESSOR 110 10 0 0 15,80 17,75 17,750

CONTROL & DATA PACKAGE 20 5 30 0 50 18 180

ASPECT SENSOR 25 -10 -52 0 125 8,00( 8,0001
i ~~~~~ iiiiii ,.,m

THERMAL CONTROL 50 -16 0 0 41,00 25,00( 25000
.~~~~~~~~~~~~ , , (~

CABLING 30 3 0 0 24,50 12,10 12100

IIS ATTACHMENTS ETC 20 O ·O O 16,5 8,1 8I i iMISC ATTACHMENTS ETC 20 0 0 0 16,50 8,10 8, 100
_ ,., ii i.-i

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

. _ _ _ _ __ _ _ _ __ _ _____ .8. O.. 

.,~~~~ ~ ~~~ - j______ ___ .___

Ai OF

INERTIA

Iox 1.989.685

Ioy 1,105,552

Ioz 1,107,217

SLUG Mf

429.4

238.6

238.9

RADIUS OF
GYRATION

Kx 40.5

Ky 30.2

Kz 30.2

9

EIGiB 1210.5

x C.G. - 5.1

Y C.G. - .5

Z C.G. 0

I
_7" 

P1 IN2



MASS PROPITIES DATA

ARRAY GROUP C - GAMA RAY SPECTROMETER & LOW BACKGROUND GAMA RAY DETECTOR

WT. X Y Z laxI Ioy 2 Lcz,
rm (OeBS) t( ) (IN) (IN) (LE IN2) (LB IN-) (LB T: I

SUPPORT FRAME 420 0 0 0 990,00 536,000 465,0001

LOW BACKGROUND DETECTOR

DETECTOR 1 500 -14 16 30,30 23,20 23,20
DETECTOR 2 -1n n o0 93_20 23gu

DETECTOR 3 500 -14 16 -32 30,30 23,200 23,2001
EnRTECTOR 4 500 -14 -16 -32 30.3 00 23.200 .
DETECTOR SUPP. 176 -6 0 -20 106,00 60,0 60,000 
ELECTRONICS 22 6 0 -20 53 530 530

NARROW BAND SPECTROMETER 

SPECTROMETER 264 -34 0 44 2,08 3,24 3,240

CRYOGENIC REFRIGERATOR 22 -7 0 44 395 460 4601

PROTECTIVE CYLINDER 687 -27 0 44 90,00 75,000i 75,000

PROTECTIVE LID & MECH 169 -42 0 44 17,75 9,8001 9,800 

SPECT/REFRIG ATTACH. 9 -21 0 44 30 2501 2501

DEPLOYMENT MECHANISM 150 26 0 44 67 27,80 27,8001

SUPPORT BASE 35 -9 0 44 44 228 2281

ELECTRONICS 22 6 0 30 530 530 530 !

CONTROL & DATA PACKAGE 20 5 30 0 50 180 1801

ASPECT SENSOR 25 -10 -52 0 125 a8,oo 8,0001

THERMAL CONTROL 50 -16 0 0 41,00 25,000 25,000

CABLING 30 3 0 0 24,500 12,100 12,100i

MISC ATTACHMENTS ETC. 20 0 0 16,500 8,100 8,100j

VEIGHT 4121

X C.G. -14.8

Y C.G. - .1

Z C.G. 5.8

POUNDS W
Iox 5,552,183

Ioy 5,127,681

Ioz 2,111,981

INERTIA
SLUG PF

1198.3

1106.7

455.8

RADIUS OF
GYRATION

Kx 36.7

Ky 35.2

Kz 22.6

10



MASS PROPERTIES DATA
ARRAY GROUP D - LARGE MODULATION COLLIMATOR

- . - . -

Ijr P'ORT FRAME

i .- ARRAYS

(S)
X
(IN)

Y
(IN)

z
(IN)

II1 - - I

420 0 0 0
- - .

660 13.5 0 0

Iox2
(LB IN )

990,000

Iov -
(LB IN N

I I

536,000 465,000
_ _ _ _ *i, I 

765,000 519,000 293,000 i

JC.NTRAL PROCESSOR 55 9 0 0 6,250 1,320 1,320

i£AS SUPPLY 11 7 -45 0 150 150 150 !

CONTROL & DATA PACKAGE 20 5 30 0 500 180 180 !

!SPECT SENSOR 25 -10 -52 0 125 8,000 8,000

THERMAL CONTROL 50 -16 0 0 41,000 25,000 25,000
·___ U. i i _ _ _ _ _

CABLING 20 3 0 0 I 16,500 8,100 8,100

p __ - - -- in

MISC. ATTACHMENT ETC. 20 O O 0 16,500 8,100 8,100

s ;
__ _ _ _ __ __ I I_ ___

_ _ _ _ __ ___ _ _ I _ _

_ ____ _ _ _ _ _ _ _ 

I______ __ __ __Ii 
! r

3i
====... I ,, 

_________________ - - ____ _ __ ___ I ______

WirsHT 1281

I C.G. -7.2

Y C.G. - 9

Z C.G. 0

POUNDS IN2

Iox 1,942,785

Ioy 1,180,633 .

Ioz 990,393

INERTIA
SLUG FT2

419.3

254.8

213.7

RADIUS -
GYRATI0r

Kx 38.9

Ky 30.3

Kz 27.8

11

r�� -fr-

-rr-L-

I I I{

,I
:1i

.i

di

:.

g

q. 
, ,.~ 7'-.7



MASS -PROFERTIES DATA
~lu% GROUP E - LARGE AREA X-RAY DETECTOR + COLLIMATED PLANE CRYSTAL SPECTROMETER

UT. X Y Z lox 2 Iy 2 IoZ 2
ITEM (st) (IN) (IN ) (IN) (LB IN-) (LB IN) (LB IN)

SUPORT FRAME 420 0 0 0 990,000 536,000 465,000

X-RAY DETECTORS

4 DETECTORS 352 -12 24 0 329,000 274,000 78,500

1 DETECTOR 88 -12 -24 48 21,200 7,250 19,600

1 DETECTOR 88 -12 -24 48 21,200 7,250 19,600

CENTRAL PROCESSOR 55 9 0 0 6,250 1,320 1,320

CRYSTAL SPECTROMETER

3 SPECTROMETERS 560 -30 -24 0 355,000 373,000 242,000

ELECTRONICS 15 6 0 -30 250 160 160
- .- 

CONTROL & DATA PACKAGE 20 5 30 0 500 180 180

ASPECT SENSOR 25 -10 -52 0 125 8,000 8,000

THERMAL CONTROL 50 -16 0 0 41,000 25,000 25,000

CABLING 30 3 0 0 24,500 12,100 12,100

MISC. ATTACHMENT ETC. 20 0 0 0 16,500 8,100 8,100

... . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.[ _
X~~~~~~~~~~~~~~~~~~~~~~~, 

WEIGHT 1723

X C.G. -13.5

Y C.G. - 5.7

Z C.G. - .2

Pt6US IN 2

Iox 2,879 632

Ioy 1,954,250

Ioz 1,817,784

INERTIA

SLUG FT2

621.5

421.8

392.3

Ky

Kz

RADIUS OF
GYRATION

40.8

33.6

32.4

12




